Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel; Patiño, Daniel; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper propose an Model Reference Adaptive Control (MRAC) for mobile robots for which stability conditions and performance evaluation are given. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a direct neural network-based adaptive dynamics control. The architecture of the dynamic control is based on radial basis functions neural networks (RBF-NN) to construct the MRAC controller. The parameters of the adaptive dynamic controller are adjusted according to a law derived using Lyapunov stability theory and the centers of the RBF are adapted using the supervised algorithm. The resulting MRAC controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. Stability result for the adaptive neuro-control system is given. It is proved that control errors are ultimately bounded as a function of the approximation error of the RBF-NN. Experimental results showing the practical feasibility and performance of the proposed approach to mobile robotics are given.
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Patiño, Daniel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Systems identification
Adaptive neural nets
Mobile robot control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192410
Ver los metadatos del registro completo
id |
CONICETDig_6e06ea499f46f77ad934043e3d576f44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192410 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural NetworksRossomando, Francisco GuidoSoria, Carlos MiguelPatiño, DanielCarelli Albarracin, Ricardo OscarSystems identificationAdaptive neural netsMobile robot controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper propose an Model Reference Adaptive Control (MRAC) for mobile robots for which stability conditions and performance evaluation are given. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a direct neural network-based adaptive dynamics control. The architecture of the dynamic control is based on radial basis functions neural networks (RBF-NN) to construct the MRAC controller. The parameters of the adaptive dynamic controller are adjusted according to a law derived using Lyapunov stability theory and the centers of the RBF are adapted using the supervised algorithm. The resulting MRAC controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. Stability result for the adaptive neuro-control system is given. It is proved that control errors are ultimately bounded as a function of the approximation error of the RBF-NN. Experimental results showing the practical feasibility and performance of the proposed approach to mobile robotics are given.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Patiño, Daniel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPlanta Piloto de Ingeniería Química2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192410Rossomando, Francisco Guido; Soria, Carlos Miguel; Patiño, Daniel; Carelli Albarracin, Ricardo Oscar; Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 2; 4-2011; 177-1820327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932011000200012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:50Zoai:ri.conicet.gov.ar:11336/192410instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:50.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
title |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
spellingShingle |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks Rossomando, Francisco Guido Systems identification Adaptive neural nets Mobile robot control |
title_short |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
title_full |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
title_fullStr |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
title_full_unstemmed |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
title_sort |
Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel Patiño, Daniel Carelli Albarracin, Ricardo Oscar |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel Patiño, Daniel Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Soria, Carlos Miguel Patiño, Daniel Carelli Albarracin, Ricardo Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Systems identification Adaptive neural nets Mobile robot control |
topic |
Systems identification Adaptive neural nets Mobile robot control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper propose an Model Reference Adaptive Control (MRAC) for mobile robots for which stability conditions and performance evaluation are given. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a direct neural network-based adaptive dynamics control. The architecture of the dynamic control is based on radial basis functions neural networks (RBF-NN) to construct the MRAC controller. The parameters of the adaptive dynamic controller are adjusted according to a law derived using Lyapunov stability theory and the centers of the RBF are adapted using the supervised algorithm. The resulting MRAC controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. Stability result for the adaptive neuro-control system is given. It is proved that control errors are ultimately bounded as a function of the approximation error of the RBF-NN. Experimental results showing the practical feasibility and performance of the proposed approach to mobile robotics are given. Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Patiño, Daniel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper propose an Model Reference Adaptive Control (MRAC) for mobile robots for which stability conditions and performance evaluation are given. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a direct neural network-based adaptive dynamics control. The architecture of the dynamic control is based on radial basis functions neural networks (RBF-NN) to construct the MRAC controller. The parameters of the adaptive dynamic controller are adjusted according to a law derived using Lyapunov stability theory and the centers of the RBF are adapted using the supervised algorithm. The resulting MRAC controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. Stability result for the adaptive neuro-control system is given. It is proved that control errors are ultimately bounded as a function of the approximation error of the RBF-NN. Experimental results showing the practical feasibility and performance of the proposed approach to mobile robotics are given. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192410 Rossomando, Francisco Guido; Soria, Carlos Miguel; Patiño, Daniel; Carelli Albarracin, Ricardo Oscar; Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 2; 4-2011; 177-182 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192410 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Patiño, Daniel; Carelli Albarracin, Ricardo Oscar; Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking Using Radial Basis Function Neural Networks; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 2; 4-2011; 177-182 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932011000200012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614208781549568 |
score |
13.070432 |