Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator

Autores
Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.
Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
adaptive control system
neural networks
MIMO systems
sliding mode control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72824

id CONICETDig_42c9a43c1f10271c954fef9a1b6562f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/72824
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural CompensatorCapraro Fuentes, Flavio AndresRossomando, Francisco GuidoSoria, Carlos MiguelScaglia, Gustavo Juan Eduardoadaptive control systemneural networksMIMO systemssliding mode controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaHindawi Publishing Corporation2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72824Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 85010981024-123X1563-5147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2017/8501098info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/8501098/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:41Zoai:ri.conicet.gov.ar:11336/72824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:41.685CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
title Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
spellingShingle Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
Capraro Fuentes, Flavio Andres
adaptive control system
neural networks
MIMO systems
sliding mode control
title_short Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
title_full Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
title_fullStr Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
title_full_unstemmed Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
title_sort Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
dc.creator.none.fl_str_mv Capraro Fuentes, Flavio Andres
Rossomando, Francisco Guido
Soria, Carlos Miguel
Scaglia, Gustavo Juan Eduardo
author Capraro Fuentes, Flavio Andres
author_facet Capraro Fuentes, Flavio Andres
Rossomando, Francisco Guido
Soria, Carlos Miguel
Scaglia, Gustavo Juan Eduardo
author_role author
author2 Rossomando, Francisco Guido
Soria, Carlos Miguel
Scaglia, Gustavo Juan Eduardo
author2_role author
author
author
dc.subject.none.fl_str_mv adaptive control system
neural networks
MIMO systems
sliding mode control
topic adaptive control system
neural networks
MIMO systems
sliding mode control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.
Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72824
Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 8501098
1024-123X
1563-5147
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72824
identifier_str_mv Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 8501098
1024-123X
1563-5147
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1155/2017/8501098
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/8501098/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083409727717376
score 13.22299