Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator
- Autores
- Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.
Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
adaptive control system
neural networks
MIMO systems
sliding mode control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72824
Ver los metadatos del registro completo
id |
CONICETDig_42c9a43c1f10271c954fef9a1b6562f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72824 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural CompensatorCapraro Fuentes, Flavio AndresRossomando, Francisco GuidoSoria, Carlos MiguelScaglia, Gustavo Juan Eduardoadaptive control systemneural networksMIMO systemssliding mode controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given.Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaHindawi Publishing Corporation2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72824Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 85010981024-123X1563-5147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2017/8501098info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/8501098/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:41Zoai:ri.conicet.gov.ar:11336/72824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:41.685CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
title |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
spellingShingle |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator Capraro Fuentes, Flavio Andres adaptive control system neural networks MIMO systems sliding mode control |
title_short |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
title_full |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
title_fullStr |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
title_full_unstemmed |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
title_sort |
Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator |
dc.creator.none.fl_str_mv |
Capraro Fuentes, Flavio Andres Rossomando, Francisco Guido Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author |
Capraro Fuentes, Flavio Andres |
author_facet |
Capraro Fuentes, Flavio Andres Rossomando, Francisco Guido Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author_role |
author |
author2 |
Rossomando, Francisco Guido Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
adaptive control system neural networks MIMO systems sliding mode control |
topic |
adaptive control system neural networks MIMO systems sliding mode control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given. Fil: Capraro Fuentes, Flavio Andres. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A design of sliding mode controllers (SMC) with adaptive capacity is presented. This control technique is formed by two cascaded SMC controllers, one of them having an adaptive neural compensator (ANC); both are put on a WMR (wheeled mobile robot). The mobile robot is divided into a kinematics and a dynamics structure; the first SMC controller acts only on the kinematic structure and the SMC with neural adaptive compensator on the other one. The dynamic SMC was designed applying an inverse dynamic controller and using the model dynamics of the WMR. The adaptive neural compensation (ANC) was used in order to reduce the control error caused by the dynamics variations but it conveys a residual approximation error, so a sliding part was designed to cancel such error. This technique allows achieving the control objective despite parameter variations and external disturbances that take place in the dynamics; on the other hand, the ANC can adjust its neural parameters to reduce the dynamics variations of the WMR and thus improve the trajectory tracking control. Problems of convergence and stability are treated and design rules based on Lyapunov's theorem are given. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72824 Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 8501098 1024-123X 1563-5147 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72824 |
identifier_str_mv |
Capraro Fuentes, Flavio Andres; Rossomando, Francisco Guido; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Cascade Sliding Control for Trajectory Tracking of a Nonholonomic Mobile Robot with Adaptive Neural Compensator; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 7-2017; 1-13; 8501098 1024-123X 1563-5147 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2017/8501098 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/8501098/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083409727717376 |
score |
13.22299 |