Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, original results, concerning the application of a discrete-time adaptive PID neural controller in mobile robots for trajectory tracking control, are reported. In this control strategy, the exact dynamical model of the robot does not need to be known, but a neural network is used to identify the dynamic model. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and variations in the robot dynamics are compensated by an adaptive neural PID controller. It is efficient and robust in order to achieve a good tracking performance. The stability of the proposed technique, based on the discrete-time Lyapunov's theory, is proven. Finally, experiments on the mobile robot have been developed to show the performance of the proposed technique, including the comparison with a classical PID.
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina - Materia
-
Mimo System
Neural Networks
Nonlinear Control
Adaptive Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4916
Ver los metadatos del registro completo
id |
CONICETDig_c647f4cd91a0de3edcbbd0fef57d8c43 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4916 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PIDRossomando, Francisco GuidoSoria, Carlos MiguelMimo SystemNeural NetworksNonlinear ControlAdaptive Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, original results, concerning the application of a discrete-time adaptive PID neural controller in mobile robots for trajectory tracking control, are reported. In this control strategy, the exact dynamical model of the robot does not need to be known, but a neural network is used to identify the dynamic model. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and variations in the robot dynamics are compensated by an adaptive neural PID controller. It is efficient and robust in order to achieve a good tracking performance. The stability of the proposed technique, based on the discrete-time Lyapunov's theory, is proven. Finally, experiments on the mobile robot have been developed to show the performance of the proposed technique, including the comparison with a classical PID.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaSpringer2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4916Rossomando, Francisco Guido; Soria, Carlos Miguel; Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID; Springer; Neural Computing And Applications; 26; 5; 12-2014; 1179-11910941-0643enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00521-014-1805-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-014-1805-8info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:15Zoai:ri.conicet.gov.ar:11336/4916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:15.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
title |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
spellingShingle |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID Rossomando, Francisco Guido Mimo System Neural Networks Nonlinear Control Adaptive Control |
title_short |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
title_full |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
title_fullStr |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
title_full_unstemmed |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
title_sort |
Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel |
author_role |
author |
author2 |
Soria, Carlos Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mimo System Neural Networks Nonlinear Control Adaptive Control |
topic |
Mimo System Neural Networks Nonlinear Control Adaptive Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, original results, concerning the application of a discrete-time adaptive PID neural controller in mobile robots for trajectory tracking control, are reported. In this control strategy, the exact dynamical model of the robot does not need to be known, but a neural network is used to identify the dynamic model. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and variations in the robot dynamics are compensated by an adaptive neural PID controller. It is efficient and robust in order to achieve a good tracking performance. The stability of the proposed technique, based on the discrete-time Lyapunov's theory, is proven. Finally, experiments on the mobile robot have been developed to show the performance of the proposed technique, including the comparison with a classical PID. Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina |
description |
In this work, original results, concerning the application of a discrete-time adaptive PID neural controller in mobile robots for trajectory tracking control, are reported. In this control strategy, the exact dynamical model of the robot does not need to be known, but a neural network is used to identify the dynamic model. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and variations in the robot dynamics are compensated by an adaptive neural PID controller. It is efficient and robust in order to achieve a good tracking performance. The stability of the proposed technique, based on the discrete-time Lyapunov's theory, is proven. Finally, experiments on the mobile robot have been developed to show the performance of the proposed technique, including the comparison with a classical PID. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4916 Rossomando, Francisco Guido; Soria, Carlos Miguel; Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID; Springer; Neural Computing And Applications; 26; 5; 12-2014; 1179-1191 0941-0643 |
url |
http://hdl.handle.net/11336/4916 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID; Springer; Neural Computing And Applications; 26; 5; 12-2014; 1179-1191 0941-0643 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00521-014-1805-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-014-1805-8 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614009566789632 |
score |
13.070432 |