Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel
- Año de publicación
- 2015
- Idioma
- portugués
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, it will be reported original results concerning the application of PID Adaptive Neural controller in mobile robot in trajectory tracking control. In this control strategy the exact dynamical model of the robot will not need to be known and identified. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and dynamics variations in the robot dynamic are compensated by an adaptive neural PID controller. The resulting adaptive neural PID controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance. The stability of the proposed technique (based on Lyapunov’s theory) was demonstrated. Finally, experiments on a mobile robot have been developed to show the performance of the proposed technique, including the comparison with other controllers.
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; Argentina - Materia
-
Mimo System
Nonlinear Control
Adaptive Control
Neural Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8907
Ver los metadatos del registro completo
id |
CONICETDig_2a413c961947f92a3013999f7e21abe3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robotsRossomando, Francisco GuidoSoria, Carlos MiguelMimo SystemNonlinear ControlAdaptive ControlNeural Networkhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, it will be reported original results concerning the application of PID Adaptive Neural controller in mobile robot in trajectory tracking control. In this control strategy the exact dynamical model of the robot will not need to be known and identified. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and dynamics variations in the robot dynamic are compensated by an adaptive neural PID controller. The resulting adaptive neural PID controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance. The stability of the proposed technique (based on Lyapunov’s theory) was demonstrated. Finally, experiments on a mobile robot have been developed to show the performance of the proposed technique, including the comparison with other controllers.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; ArgentinaInstitute Of Electrical And Electronics Engineers2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8907Rossomando, Francisco Guido; Soria, Carlos Miguel; Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots; Institute Of Electrical And Electronics Engineers; IEEE Latin America Transactions; 13; 4; 4-2015; 913-9181548-0992porinfo:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7106337info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7106337/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:19Zoai:ri.conicet.gov.ar:11336/8907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:19.631CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
title |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
spellingShingle |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots Rossomando, Francisco Guido Mimo System Nonlinear Control Adaptive Control Neural Network |
title_short |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
title_full |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
title_fullStr |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
title_full_unstemmed |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
title_sort |
Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel |
author_role |
author |
author2 |
Soria, Carlos Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mimo System Nonlinear Control Adaptive Control Neural Network |
topic |
Mimo System Nonlinear Control Adaptive Control Neural Network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, it will be reported original results concerning the application of PID Adaptive Neural controller in mobile robot in trajectory tracking control. In this control strategy the exact dynamical model of the robot will not need to be known and identified. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and dynamics variations in the robot dynamic are compensated by an adaptive neural PID controller. The resulting adaptive neural PID controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance. The stability of the proposed technique (based on Lyapunov’s theory) was demonstrated. Finally, experiments on a mobile robot have been developed to show the performance of the proposed technique, including the comparison with other controllers. Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; Argentina |
description |
In this work, it will be reported original results concerning the application of PID Adaptive Neural controller in mobile robot in trajectory tracking control. In this control strategy the exact dynamical model of the robot will not need to be known and identified. To implement this strategy, two controllers are implemented separately: a kinematic controller and an adaptive neural PID controller. The uncertainty and dynamics variations in the robot dynamic are compensated by an adaptive neural PID controller. The resulting adaptive neural PID controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance. The stability of the proposed technique (based on Lyapunov’s theory) was demonstrated. Finally, experiments on a mobile robot have been developed to show the performance of the proposed technique, including the comparison with other controllers. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8907 Rossomando, Francisco Guido; Soria, Carlos Miguel; Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots; Institute Of Electrical And Electronics Engineers; IEEE Latin America Transactions; 13; 4; 4-2015; 913-918 1548-0992 |
url |
http://hdl.handle.net/11336/8907 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Design and implementation of adaptive NeuralPID for non linear dynamics in mobile robots; Institute Of Electrical And Electronics Engineers; IEEE Latin America Transactions; 13; 4; 4-2015; 913-918 1548-0992 |
dc.language.none.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7106337 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7106337/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613276036497408 |
score |
13.070432 |