Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive R...
- Autores
- Musiani, Francesco; Rossetti, Giulia; Capece, Luciana; Gerger, Thomas Martin; Micheletti, Cristian; Varani, Gabriele; Carloni, Paolo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
Fil: Musiani, Francesco. Scuola Internazionale Superiore di Studi Avanzati; Italia. Università di Bologna; Italia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Rossetti, Giulia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Capece, Luciana. International Centre for Genetic Engineering and Biotechnology; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gerger, Thomas Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Micheletti, Cristian. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Varani, Gabriele. University of Washington; Estados Unidos
Fil: Carloni, Paolo. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania - Materia
-
Molecular Dynamics
Hiv
Tar
Rna - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33089
Ver los metadatos del registro completo
| id |
CONICETDig_cf6597d833ad843360b206c374bff87f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33089 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNAMusiani, FrancescoRossetti, GiuliaCapece, LucianaGerger, Thomas MartinMicheletti, CristianVarani, GabrieleCarloni, PaoloMolecular DynamicsHivTarRnahttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.Fil: Musiani, Francesco. Scuola Internazionale Superiore di Studi Avanzati; Italia. Università di Bologna; Italia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Rossetti, Giulia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Capece, Luciana. International Centre for Genetic Engineering and Biotechnology; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gerger, Thomas Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Micheletti, Cristian. Scuola Internazionale Superiore di Studi Avanzati; ItaliaFil: Varani, Gabriele. University of Washington; Estados UnidosFil: Carloni, Paolo. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaAmerican Chemical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33089Carloni, Paolo; Varani, Gabriele; Musiani, Francesco; Micheletti, Cristian; Rossetti, Giulia; Gerger, Thomas Martin; et al.; Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA; American Chemical Society; Journal of the American Chemical Society; 136; 44; 10-2014; 15631-156370002-7863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ja507812vinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ja507812vinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:46:21Zoai:ri.conicet.gov.ar:11336/33089instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:46:21.642CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| title |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| spellingShingle |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA Musiani, Francesco Molecular Dynamics Hiv Tar Rna |
| title_short |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| title_full |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| title_fullStr |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| title_full_unstemmed |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| title_sort |
Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
| dc.creator.none.fl_str_mv |
Musiani, Francesco Rossetti, Giulia Capece, Luciana Gerger, Thomas Martin Micheletti, Cristian Varani, Gabriele Carloni, Paolo |
| author |
Musiani, Francesco |
| author_facet |
Musiani, Francesco Rossetti, Giulia Capece, Luciana Gerger, Thomas Martin Micheletti, Cristian Varani, Gabriele Carloni, Paolo |
| author_role |
author |
| author2 |
Rossetti, Giulia Capece, Luciana Gerger, Thomas Martin Micheletti, Cristian Varani, Gabriele Carloni, Paolo |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Molecular Dynamics Hiv Tar Rna |
| topic |
Molecular Dynamics Hiv Tar Rna |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding. Fil: Musiani, Francesco. Scuola Internazionale Superiore di Studi Avanzati; Italia. Università di Bologna; Italia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Rossetti, Giulia. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Capece, Luciana. International Centre for Genetic Engineering and Biotechnology; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gerger, Thomas Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Micheletti, Cristian. Scuola Internazionale Superiore di Studi Avanzati; Italia Fil: Varani, Gabriele. University of Washington; Estados Unidos Fil: Carloni, Paolo. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania |
| description |
The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33089 Carloni, Paolo; Varani, Gabriele; Musiani, Francesco; Micheletti, Cristian; Rossetti, Giulia; Gerger, Thomas Martin; et al.; Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA; American Chemical Society; Journal of the American Chemical Society; 136; 44; 10-2014; 15631-15637 0002-7863 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33089 |
| identifier_str_mv |
Carloni, Paolo; Varani, Gabriele; Musiani, Francesco; Micheletti, Cristian; Rossetti, Giulia; Gerger, Thomas Martin; et al.; Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA; American Chemical Society; Journal of the American Chemical Society; 136; 44; 10-2014; 15631-15637 0002-7863 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ja507812v info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ja507812v |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597882490322944 |
| score |
13.223955 |