Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators

Autores
Zhang, Shiyu; Holmes, Andrew P.; Dick, Alexej; Rashad, Adel A.; Enríquez Rodríguez, Lucía; Canziani, Gabriela Alicia; Root, Michael J.; Chaiken, Irwin M.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. Results: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. Conclusions: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env’s prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
Fil: Zhang, Shiyu. Drexel University; Estados Unidos
Fil: Holmes, Andrew P.. Drexel University College Of Medicine; Estados Unidos
Fil: Dick, Alexej. Drexel University College Of Medicine; Estados Unidos
Fil: Rashad, Adel A.. Drexel University College Of Medicine; Estados Unidos
Fil: Enríquez Rodríguez, Lucía. Universidad Francisco de Vitoria; España
Fil: Canziani, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; Argentina
Fil: Root, Michael J.. The Ohio State University College Of Medicine; Estados Unidos
Fil: Chaiken, Irwin M.. Drexel University College Of Medicine; Estados Unidos
Materia
CONFORMATIONAL DYNAMICS
ENTRY INHIBITOR
ENVELOPE GLYCOPROTEINS
GP120 SHEDDING
HIV-1
ISOTHERMAL TITRATION CALORIMETRY (ITC)
MACROCYCLIC PEPTIDE
RESISTANCE MECHANISM
SURFACE PLASMON RESONANCE (SPR)
VIRUS ESCAPE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211966

id CONICETDig_e16c626479d296af134a90dab7aa4544
oai_identifier_str oai:ri.conicet.gov.ar:11336/211966
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivatorsZhang, ShiyuHolmes, Andrew P.Dick, AlexejRashad, Adel A.Enríquez Rodríguez, LucíaCanziani, Gabriela AliciaRoot, Michael J.Chaiken, Irwin M.CONFORMATIONAL DYNAMICSENTRY INHIBITORENVELOPE GLYCOPROTEINSGP120 SHEDDINGHIV-1ISOTHERMAL TITRATION CALORIMETRY (ITC)MACROCYCLIC PEPTIDERESISTANCE MECHANISMSURFACE PLASMON RESONANCE (SPR)VIRUS ESCAPEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. Results: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. Conclusions: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env’s prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.Fil: Zhang, Shiyu. Drexel University; Estados UnidosFil: Holmes, Andrew P.. Drexel University College Of Medicine; Estados UnidosFil: Dick, Alexej. Drexel University College Of Medicine; Estados UnidosFil: Rashad, Adel A.. Drexel University College Of Medicine; Estados UnidosFil: Enríquez Rodríguez, Lucía. Universidad Francisco de Vitoria; EspañaFil: Canziani, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Root, Michael J.. The Ohio State University College Of Medicine; Estados UnidosFil: Chaiken, Irwin M.. Drexel University College Of Medicine; Estados UnidosBioMed Central2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211966Zhang, Shiyu; Holmes, Andrew P.; Dick, Alexej; Rashad, Adel A.; Enríquez Rodríguez, Lucía; et al.; Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators; BioMed Central; Retrovirology; 18; 1; 12-2021; 1-181742-4690CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12977-021-00575-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:19Zoai:ri.conicet.gov.ar:11336/211966instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:19.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
title Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
spellingShingle Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
Zhang, Shiyu
CONFORMATIONAL DYNAMICS
ENTRY INHIBITOR
ENVELOPE GLYCOPROTEINS
GP120 SHEDDING
HIV-1
ISOTHERMAL TITRATION CALORIMETRY (ITC)
MACROCYCLIC PEPTIDE
RESISTANCE MECHANISM
SURFACE PLASMON RESONANCE (SPR)
VIRUS ESCAPE
title_short Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
title_full Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
title_fullStr Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
title_full_unstemmed Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
title_sort Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators
dc.creator.none.fl_str_mv Zhang, Shiyu
Holmes, Andrew P.
Dick, Alexej
Rashad, Adel A.
Enríquez Rodríguez, Lucía
Canziani, Gabriela Alicia
Root, Michael J.
Chaiken, Irwin M.
author Zhang, Shiyu
author_facet Zhang, Shiyu
Holmes, Andrew P.
Dick, Alexej
Rashad, Adel A.
Enríquez Rodríguez, Lucía
Canziani, Gabriela Alicia
Root, Michael J.
Chaiken, Irwin M.
author_role author
author2 Holmes, Andrew P.
Dick, Alexej
Rashad, Adel A.
Enríquez Rodríguez, Lucía
Canziani, Gabriela Alicia
Root, Michael J.
Chaiken, Irwin M.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CONFORMATIONAL DYNAMICS
ENTRY INHIBITOR
ENVELOPE GLYCOPROTEINS
GP120 SHEDDING
HIV-1
ISOTHERMAL TITRATION CALORIMETRY (ITC)
MACROCYCLIC PEPTIDE
RESISTANCE MECHANISM
SURFACE PLASMON RESONANCE (SPR)
VIRUS ESCAPE
topic CONFORMATIONAL DYNAMICS
ENTRY INHIBITOR
ENVELOPE GLYCOPROTEINS
GP120 SHEDDING
HIV-1
ISOTHERMAL TITRATION CALORIMETRY (ITC)
MACROCYCLIC PEPTIDE
RESISTANCE MECHANISM
SURFACE PLASMON RESONANCE (SPR)
VIRUS ESCAPE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. Results: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. Conclusions: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env’s prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
Fil: Zhang, Shiyu. Drexel University; Estados Unidos
Fil: Holmes, Andrew P.. Drexel University College Of Medicine; Estados Unidos
Fil: Dick, Alexej. Drexel University College Of Medicine; Estados Unidos
Fil: Rashad, Adel A.. Drexel University College Of Medicine; Estados Unidos
Fil: Enríquez Rodríguez, Lucía. Universidad Francisco de Vitoria; España
Fil: Canziani, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; Argentina
Fil: Root, Michael J.. The Ohio State University College Of Medicine; Estados Unidos
Fil: Chaiken, Irwin M.. Drexel University College Of Medicine; Estados Unidos
description Background: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. Results: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. Conclusions: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env’s prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211966
Zhang, Shiyu; Holmes, Andrew P.; Dick, Alexej; Rashad, Adel A.; Enríquez Rodríguez, Lucía; et al.; Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators; BioMed Central; Retrovirology; 18; 1; 12-2021; 1-18
1742-4690
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211966
identifier_str_mv Zhang, Shiyu; Holmes, Andrew P.; Dick, Alexej; Rashad, Adel A.; Enríquez Rodríguez, Lucía; et al.; Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators; BioMed Central; Retrovirology; 18; 1; 12-2021; 1-18
1742-4690
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/s12977-021-00575-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597567926960128
score 13.24909