Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
- Autores
- Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina - Materia
-
CalderÓN-Zygmund
Maximal Functions
Spaces of Homogeneous Type - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84060
Ver los metadatos del registro completo
id |
CONICETDig_cdc6d25bb3feec64453f6225e7fb9dd7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84060 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous typeAimar, Hugo AlejandroBernardis, Ana LuciIaffei, Bibiana RaquelCalderÓN-ZygmundMaximal FunctionsSpaces of Homogeneous Typehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; ArgentinaAcademic Press Inc Elsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84060Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-1200022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2005.03.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:28Zoai:ri.conicet.gov.ar:11336/84060instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:29.146CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
title |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
spellingShingle |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type Aimar, Hugo Alejandro CalderÓN-Zygmund Maximal Functions Spaces of Homogeneous Type |
title_short |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
title_full |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
title_fullStr |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
title_full_unstemmed |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
title_sort |
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Bernardis, Ana Luci Iaffei, Bibiana Raquel |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Bernardis, Ana Luci Iaffei, Bibiana Raquel |
author_role |
author |
author2 |
Bernardis, Ana Luci Iaffei, Bibiana Raquel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CalderÓN-Zygmund Maximal Functions Spaces of Homogeneous Type |
topic |
CalderÓN-Zygmund Maximal Functions Spaces of Homogeneous Type |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina |
description |
We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84060 Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-120 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84060 |
identifier_str_mv |
Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-120 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2005.03.034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270159727755264 |
score |
13.13397 |