Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type

Autores
Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina
Materia
CalderÓN-Zygmund
Maximal Functions
Spaces of Homogeneous Type
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84060

id CONICETDig_cdc6d25bb3feec64453f6225e7fb9dd7
oai_identifier_str oai:ri.conicet.gov.ar:11336/84060
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous typeAimar, Hugo AlejandroBernardis, Ana LuciIaffei, Bibiana RaquelCalderÓN-ZygmundMaximal FunctionsSpaces of Homogeneous Typehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; ArgentinaAcademic Press Inc Elsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84060Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-1200022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2005.03.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:28Zoai:ri.conicet.gov.ar:11336/84060instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:29.146CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
title Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
spellingShingle Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
Aimar, Hugo Alejandro
CalderÓN-Zygmund
Maximal Functions
Spaces of Homogeneous Type
title_short Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
title_full Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
title_fullStr Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
title_full_unstemmed Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
title_sort Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
dc.creator.none.fl_str_mv Aimar, Hugo Alejandro
Bernardis, Ana Luci
Iaffei, Bibiana Raquel
author Aimar, Hugo Alejandro
author_facet Aimar, Hugo Alejandro
Bernardis, Ana Luci
Iaffei, Bibiana Raquel
author_role author
author2 Bernardis, Ana Luci
Iaffei, Bibiana Raquel
author2_role author
author
dc.subject.none.fl_str_mv CalderÓN-Zygmund
Maximal Functions
Spaces of Homogeneous Type
topic CalderÓN-Zygmund
Maximal Functions
Spaces of Homogeneous Type
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Bernardis, Ana Luci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina
description We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84060
Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-120
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84060
identifier_str_mv Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-120
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2005.03.034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270159727755264
score 13.13397