A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
- Autores
- Pérez Moreno, Carlos; Rela, Ezequiel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.
Fil: Pérez Moreno, Carlos. Universidad de Sevilla; España
Fil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Two Weight Theorem
Space of Homogeneous Type
Muckenhoupt Weights
Maximal Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18994
Ver los metadatos del registro completo
id |
CONICETDig_9ac260445ca111884bb487cec5380c5b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18994 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operatorPérez Moreno, CarlosRela, EzequielTwo Weight TheoremSpace of Homogeneous TypeMuckenhoupt WeightsMaximal Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.Fil: Pérez Moreno, Carlos. Universidad de Sevilla; EspañaFil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18994Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-6550002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12353-7info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2015-143-02/S0002-9939-2014-12353-7/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.0415info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:49Zoai:ri.conicet.gov.ar:11336/18994instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:49.774CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
title |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
spellingShingle |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator Pérez Moreno, Carlos Two Weight Theorem Space of Homogeneous Type Muckenhoupt Weights Maximal Functions |
title_short |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
title_full |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
title_fullStr |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
title_full_unstemmed |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
title_sort |
A new quantitative two weight theorem for the Hardy-Littlewood maximal operator |
dc.creator.none.fl_str_mv |
Pérez Moreno, Carlos Rela, Ezequiel |
author |
Pérez Moreno, Carlos |
author_facet |
Pérez Moreno, Carlos Rela, Ezequiel |
author_role |
author |
author2 |
Rela, Ezequiel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Two Weight Theorem Space of Homogeneous Type Muckenhoupt Weights Maximal Functions |
topic |
Two Weight Theorem Space of Homogeneous Type Muckenhoupt Weights Maximal Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition. Fil: Pérez Moreno, Carlos. Universidad de Sevilla; España Fil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18994 Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-655 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18994 |
identifier_str_mv |
Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-655 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12353-7 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2015-143-02/S0002-9939-2014-12353-7/home.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.0415 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270095561195520 |
score |
13.13397 |