A new quantitative two weight theorem for the Hardy-Littlewood maximal operator

Autores
Pérez Moreno, Carlos; Rela, Ezequiel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.
Fil: Pérez Moreno, Carlos. Universidad de Sevilla; España
Fil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Two Weight Theorem
Space of Homogeneous Type
Muckenhoupt Weights
Maximal Functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18994

id CONICETDig_9ac260445ca111884bb487cec5380c5b
oai_identifier_str oai:ri.conicet.gov.ar:11336/18994
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new quantitative two weight theorem for the Hardy-Littlewood maximal operatorPérez Moreno, CarlosRela, EzequielTwo Weight TheoremSpace of Homogeneous TypeMuckenhoupt WeightsMaximal Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.Fil: Pérez Moreno, Carlos. Universidad de Sevilla; EspañaFil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18994Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-6550002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12353-7info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2015-143-02/S0002-9939-2014-12353-7/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.0415info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:49Zoai:ri.conicet.gov.ar:11336/18994instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:49.774CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
title A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
spellingShingle A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
Pérez Moreno, Carlos
Two Weight Theorem
Space of Homogeneous Type
Muckenhoupt Weights
Maximal Functions
title_short A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
title_full A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
title_fullStr A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
title_full_unstemmed A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
title_sort A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
dc.creator.none.fl_str_mv Pérez Moreno, Carlos
Rela, Ezequiel
author Pérez Moreno, Carlos
author_facet Pérez Moreno, Carlos
Rela, Ezequiel
author_role author
author2 Rela, Ezequiel
author2_role author
dc.subject.none.fl_str_mv Two Weight Theorem
Space of Homogeneous Type
Muckenhoupt Weights
Maximal Functions
topic Two Weight Theorem
Space of Homogeneous Type
Muckenhoupt Weights
Maximal Functions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.
Fil: Pérez Moreno, Carlos. Universidad de Sevilla; España
Fil: Rela, Ezequiel. Universidad de Sevilla; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hyt¨onen and the first author and Hyt¨onen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A∞ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18994
Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-655
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18994
identifier_str_mv Pérez Moreno, Carlos; Rela, Ezequiel; A new quantitative two weight theorem for the Hardy-Littlewood maximal operator; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 2; 2-2015; 641-655
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12353-7
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2015-143-02/S0002-9939-2014-12353-7/home.html
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.0415
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270095561195520
score 13.13397