Halogen etching of Si via atomic-scale processes
- Autores
- Aldao, Celso Manuel; Weaver, J. H.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed. Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness. For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns. Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K. Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching. Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F. For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen. In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps. Step flow continues at 1000 K but terrace pitting is also activated. This produces triangular bilayer pits bounded by <1 0> edges. At 1100 K, etching produces disordered vacancy clusters in the adatom layer. The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Weaver, J. H.. University of Illinois at Urbana; Estados Unidos - Materia
-
Scanning Tunneling Microscopy
Etching
Morphology
Roughness And Topography
Silicon Halogens
Surface Structure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/35605
Ver los metadatos del registro completo
id |
CONICETDig_cd2ecc2024e1bcbb5f3387d21fef8f6b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/35605 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Halogen etching of Si via atomic-scale processesAldao, Celso ManuelWeaver, J. H.Scanning Tunneling MicroscopyEtchingMorphologyRoughness And TopographySilicon HalogensSurface Structurehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed. Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness. For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns. Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K. Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching. Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F. For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen. In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps. Step flow continues at 1000 K but terrace pitting is also activated. This produces triangular bilayer pits bounded by <1 0> edges. At 1100 K, etching produces disordered vacancy clusters in the adatom layer. The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Weaver, J. H.. University of Illinois at Urbana; Estados UnidosElsevier2001-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35605Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-2300079-6816CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jhweaver.matse.illinois.edu/Aldao_Weaver_Prog_Sur_Sci.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:15:11Zoai:ri.conicet.gov.ar:11336/35605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:15:11.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Halogen etching of Si via atomic-scale processes |
title |
Halogen etching of Si via atomic-scale processes |
spellingShingle |
Halogen etching of Si via atomic-scale processes Aldao, Celso Manuel Scanning Tunneling Microscopy Etching Morphology Roughness And Topography Silicon Halogens Surface Structure |
title_short |
Halogen etching of Si via atomic-scale processes |
title_full |
Halogen etching of Si via atomic-scale processes |
title_fullStr |
Halogen etching of Si via atomic-scale processes |
title_full_unstemmed |
Halogen etching of Si via atomic-scale processes |
title_sort |
Halogen etching of Si via atomic-scale processes |
dc.creator.none.fl_str_mv |
Aldao, Celso Manuel Weaver, J. H. |
author |
Aldao, Celso Manuel |
author_facet |
Aldao, Celso Manuel Weaver, J. H. |
author_role |
author |
author2 |
Weaver, J. H. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Scanning Tunneling Microscopy Etching Morphology Roughness And Topography Silicon Halogens Surface Structure |
topic |
Scanning Tunneling Microscopy Etching Morphology Roughness And Topography Silicon Halogens Surface Structure |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed. Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness. For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns. Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K. Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching. Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F. For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen. In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps. Step flow continues at 1000 K but terrace pitting is also activated. This produces triangular bilayer pits bounded by <1 0> edges. At 1100 K, etching produces disordered vacancy clusters in the adatom layer. The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal. Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Weaver, J. H.. University of Illinois at Urbana; Estados Unidos |
description |
Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed. Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness. For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns. Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K. Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching. Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F. For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen. In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps. Step flow continues at 1000 K but terrace pitting is also activated. This produces triangular bilayer pits bounded by <1 0> edges. At 1100 K, etching produces disordered vacancy clusters in the adatom layer. The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-09-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/35605 Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-230 0079-6816 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/35605 |
identifier_str_mv |
Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-230 0079-6816 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jhweaver.matse.illinois.edu/Aldao_Weaver_Prog_Sur_Sci.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083299645063168 |
score |
13.22299 |