Halogen etching of Si via atomic-scale processes

Autores
Aldao, Celso Manuel; Weaver, J. H.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed.  Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness.  For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns.  Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K.  Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching.  Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F.  For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen.  In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps.  Step flow continues at 1000 K but terrace pitting is also activated.  This produces triangular bilayer pits bounded by <1 0> edges.  At 1100 K, etching produces disordered vacancy clusters in the adatom layer.  The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Weaver, J. H.. University of Illinois at Urbana; Estados Unidos
Materia
Scanning Tunneling Microscopy
Etching
Morphology
Roughness And Topography
Silicon Halogens
Surface Structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/35605

id CONICETDig_cd2ecc2024e1bcbb5f3387d21fef8f6b
oai_identifier_str oai:ri.conicet.gov.ar:11336/35605
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Halogen etching of Si via atomic-scale processesAldao, Celso ManuelWeaver, J. H.Scanning Tunneling MicroscopyEtchingMorphologyRoughness And TopographySilicon HalogensSurface Structurehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed.  Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness.  For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns.  Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K.  Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching.  Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F.  For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen.  In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps.  Step flow continues at 1000 K but terrace pitting is also activated.  This produces triangular bilayer pits bounded by <1 0> edges.  At 1100 K, etching produces disordered vacancy clusters in the adatom layer.  The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Weaver, J. H.. University of Illinois at Urbana; Estados UnidosElsevier2001-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35605Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-2300079-6816CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jhweaver.matse.illinois.edu/Aldao_Weaver_Prog_Sur_Sci.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:15:11Zoai:ri.conicet.gov.ar:11336/35605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:15:11.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Halogen etching of Si via atomic-scale processes
title Halogen etching of Si via atomic-scale processes
spellingShingle Halogen etching of Si via atomic-scale processes
Aldao, Celso Manuel
Scanning Tunneling Microscopy
Etching
Morphology
Roughness And Topography
Silicon Halogens
Surface Structure
title_short Halogen etching of Si via atomic-scale processes
title_full Halogen etching of Si via atomic-scale processes
title_fullStr Halogen etching of Si via atomic-scale processes
title_full_unstemmed Halogen etching of Si via atomic-scale processes
title_sort Halogen etching of Si via atomic-scale processes
dc.creator.none.fl_str_mv Aldao, Celso Manuel
Weaver, J. H.
author Aldao, Celso Manuel
author_facet Aldao, Celso Manuel
Weaver, J. H.
author_role author
author2 Weaver, J. H.
author2_role author
dc.subject.none.fl_str_mv Scanning Tunneling Microscopy
Etching
Morphology
Roughness And Topography
Silicon Halogens
Surface Structure
topic Scanning Tunneling Microscopy
Etching
Morphology
Roughness And Topography
Silicon Halogens
Surface Structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed.  Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness.  For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns.  Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K.  Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching.  Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F.  For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen.  In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps.  Step flow continues at 1000 K but terrace pitting is also activated.  This produces triangular bilayer pits bounded by <1 0> edges.  At 1100 K, etching produces disordered vacancy clusters in the adatom layer.  The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Weaver, J. H.. University of Illinois at Urbana; Estados Unidos
description Scanning tunneling microscopy studies of spontaneous halogen etching of Si(100)-2x1 and Si(111) in the range 700–1100 K are reviewed.  Although the morphology depends on temperature, the steady-state removal of Si by chlorine, bromine and iodine is dominated by layer-by-layer etching that produces bounded surface roughness.  For Si(100), the etch pits, step profiles, and Si regrowth structures on the exposed surfaces exhibit temperature dependent characteristic patterns.  Healing of this etched surface begins at ~1000 K, and there is complete halogen desorption and restoration of the pre-etch morphology by ~1100 K.  Since reaction pathways involve atomic level interactions, it is possible to use the data obtained with STM to extract information about the atomic-scale processes involved during etching.  Thermally-activated reactions of adsorbed F show that dimer vacancies are produced in the top layer but, more significantly, there is multilayer pitting that accounts for a surface roughening which is unique to F.  For Si(111)-7x7 etching in the range 700 ≤ T ≤ 900 K involves Si removal from adatom sites and conversion to a 1x1 periodicity that is stabilized by the halogen.  In this temperature range, bilayer step flow etching dominates and regrowth structures derived from six-membered Si rings terminated by Br appear near the bilayer steps.  Step flow continues at 1000 K but terrace pitting is also activated.  This produces triangular bilayer pits bounded by <1 0> edges.  At 1100 K, etching produces disordered vacancy clusters in the adatom layer.  The presence of small ordered domains amidst randomly distributed adatoms is attributed to facile local removal.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/35605
Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-230
0079-6816
CONICET Digital
CONICET
url http://hdl.handle.net/11336/35605
identifier_str_mv Aldao, Celso Manuel; Weaver, J. H.; Halogen etching of Si via atomic-scale processes; Elsevier; Progress in Surface Science; 68; 4-6; 26-9-2001; 189-230
0079-6816
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://jhweaver.matse.illinois.edu/Aldao_Weaver_Prog_Sur_Sci.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083299645063168
score 13.22299