On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics
- Autores
- Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the solution of the time-harmonic Maxwell equations with vanishing electric permittivity in bounded domains and subject to absorbing boundary conditions. The problem arises naturally in magnetotellurics when considering the propagation of electromagnetic waves within the earth's interior. Existence and uniqueness are shown under the assumption that the source functions are square integrable. In this case, the electric and magnetic fields belong to H(curl; Ω). If, in addition, the divergences of the source functions are square integrable and the coefficients are Lipschitz-continuous, a stronger regularity result is obtained. A decomposition of the space of square integrable vector functions and a new compact imbedding result are exploited.
Fil: Douglas, Jim. Purdue University; Estados Unidos
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Purdue University; Estados Unidos
Fil: Sheen, Dongwoo. Seoul National University; Kazajistán - Materia
-
Solution
Uniqueness
Equation
Magneoteluric - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71631
Ver los metadatos del registro completo
| id |
CONICETDig_ca579545a00bd238a34f055b7fe95326 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71631 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotelluricsDouglas, JimSantos, Juan EnriqueSheen, DongwooSolutionUniquenessEquationMagneotelurichttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We analyze the solution of the time-harmonic Maxwell equations with vanishing electric permittivity in bounded domains and subject to absorbing boundary conditions. The problem arises naturally in magnetotellurics when considering the propagation of electromagnetic waves within the earth's interior. Existence and uniqueness are shown under the assumption that the source functions are square integrable. In this case, the electric and magnetic fields belong to H(curl; Ω). If, in addition, the divergences of the source functions are square integrable and the coefficients are Lipschitz-continuous, a stronger regularity result is obtained. A decomposition of the space of square integrable vector functions and a new compact imbedding result are exploited.Fil: Douglas, Jim. Purdue University; Estados UnidosFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Purdue University; Estados UnidosFil: Sheen, Dongwoo. Seoul National University; KazajistánWorld Scientific2000-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71631Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 615-6280218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202500000331info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202500000331info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:03Zoai:ri.conicet.gov.ar:11336/71631instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:03.359CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| title |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| spellingShingle |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics Douglas, Jim Solution Uniqueness Equation Magneoteluric |
| title_short |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| title_full |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| title_fullStr |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| title_full_unstemmed |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| title_sort |
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics |
| dc.creator.none.fl_str_mv |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo |
| author |
Douglas, Jim |
| author_facet |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo |
| author_role |
author |
| author2 |
Santos, Juan Enrique Sheen, Dongwoo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Solution Uniqueness Equation Magneoteluric |
| topic |
Solution Uniqueness Equation Magneoteluric |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We analyze the solution of the time-harmonic Maxwell equations with vanishing electric permittivity in bounded domains and subject to absorbing boundary conditions. The problem arises naturally in magnetotellurics when considering the propagation of electromagnetic waves within the earth's interior. Existence and uniqueness are shown under the assumption that the source functions are square integrable. In this case, the electric and magnetic fields belong to H(curl; Ω). If, in addition, the divergences of the source functions are square integrable and the coefficients are Lipschitz-continuous, a stronger regularity result is obtained. A decomposition of the space of square integrable vector functions and a new compact imbedding result are exploited. Fil: Douglas, Jim. Purdue University; Estados Unidos Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Purdue University; Estados Unidos Fil: Sheen, Dongwoo. Seoul National University; Kazajistán |
| description |
We analyze the solution of the time-harmonic Maxwell equations with vanishing electric permittivity in bounded domains and subject to absorbing boundary conditions. The problem arises naturally in magnetotellurics when considering the propagation of electromagnetic waves within the earth's interior. Existence and uniqueness are shown under the assumption that the source functions are square integrable. In this case, the electric and magnetic fields belong to H(curl; Ω). If, in addition, the divergences of the source functions are square integrable and the coefficients are Lipschitz-continuous, a stronger regularity result is obtained. A decomposition of the space of square integrable vector functions and a new compact imbedding result are exploited. |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71631 Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 615-628 0218-2025 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/71631 |
| identifier_str_mv |
Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 615-628 0218-2025 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202500000331 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202500000331 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
World Scientific |
| publisher.none.fl_str_mv |
World Scientific |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082934433382400 |
| score |
13.22299 |