A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions

Autores
Barrios, Begona; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, Alexander
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we obtain a Liouville theorem for positive, bounded solutions of the equation where (-δ)s stands for the fractional Laplacian with s 2 (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
Fil: Barrios, Begona. Universidad de La Laguna; España
Fil: del Pezzo, Leandro Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Melian, Jorge. Universidad de La Laguna; España
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; España
Materia
A Priori Bounds
Fractional Laplacian
Liouville Theorem
Positive Solution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72235

id CONICETDig_94266568b683744b5ab857cb8d0cc447
oai_identifier_str oai:ri.conicet.gov.ar:11336/72235
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutionsBarrios, Begonadel Pezzo, Leandro MartinGarcia Melian, JorgeQuaas, AlexanderA Priori BoundsFractional LaplacianLiouville TheoremPositive Solutionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we obtain a Liouville theorem for positive, bounded solutions of the equation where (-δ)s stands for the fractional Laplacian with s 2 (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.Fil: Barrios, Begona. Universidad de La Laguna; EspañaFil: del Pezzo, Leandro Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Melian, Jorge. Universidad de La Laguna; EspañaFil: Quaas, Alexander. Universidad Técnica Federico Santa María; EspañaAmerican Institute of Mathematical Sciences2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72235Barrios, Begona; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, Alexander; A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 37; 11; 11-2017; 5731-57461078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2017248info:eu-repo/semantics/altIdentifier/url/http://aimsciences.org//article/doi/10.3934/dcds.2017248info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:14Zoai:ri.conicet.gov.ar:11336/72235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:14.704CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
title A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
spellingShingle A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
Barrios, Begona
A Priori Bounds
Fractional Laplacian
Liouville Theorem
Positive Solution
title_short A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
title_full A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
title_fullStr A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
title_full_unstemmed A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
title_sort A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
dc.creator.none.fl_str_mv Barrios, Begona
del Pezzo, Leandro Martin
Garcia Melian, Jorge
Quaas, Alexander
author Barrios, Begona
author_facet Barrios, Begona
del Pezzo, Leandro Martin
Garcia Melian, Jorge
Quaas, Alexander
author_role author
author2 del Pezzo, Leandro Martin
Garcia Melian, Jorge
Quaas, Alexander
author2_role author
author
author
dc.subject.none.fl_str_mv A Priori Bounds
Fractional Laplacian
Liouville Theorem
Positive Solution
topic A Priori Bounds
Fractional Laplacian
Liouville Theorem
Positive Solution
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we obtain a Liouville theorem for positive, bounded solutions of the equation where (-δ)s stands for the fractional Laplacian with s 2 (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
Fil: Barrios, Begona. Universidad de La Laguna; España
Fil: del Pezzo, Leandro Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Melian, Jorge. Universidad de La Laguna; España
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; España
description In this work we obtain a Liouville theorem for positive, bounded solutions of the equation where (-δ)s stands for the fractional Laplacian with s 2 (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72235
Barrios, Begona; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, Alexander; A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 37; 11; 11-2017; 5731-5746
1078-0947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72235
identifier_str_mv Barrios, Begona; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, Alexander; A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 37; 11; 11-2017; 5731-5746
1078-0947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2017248
info:eu-repo/semantics/altIdentifier/url/http://aimsciences.org//article/doi/10.3934/dcds.2017248
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268779717853184
score 13.13397