A nonconforming mixed finite element method for Maxwell's equations

Autores
Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
Fil: Douglas, Jim. Purdue University; Estados Unidos
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sheen, Dongwoo. Seoul National University; Corea del Sur
Materia
Nonconforming Finite Element Method
Finite Element
Element
Method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71630

id CONICETDig_202cea6a53a4028a73c6bcc86dbf3107
oai_identifier_str oai:ri.conicet.gov.ar:11336/71630
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A nonconforming mixed finite element method for Maxwell's equationsDouglas, JimSantos, Juan EnriqueSheen, DongwooNonconforming Finite Element MethodFinite ElementElementMethodhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.Fil: Douglas, Jim. Purdue University; Estados UnidosFil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sheen, Dongwoo. Seoul National University; Corea del SurWorld Scientific2000-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71630Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-6130218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021820250000032Xinfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820250000032Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:43Zoai:ri.conicet.gov.ar:11336/71630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:43.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A nonconforming mixed finite element method for Maxwell's equations
title A nonconforming mixed finite element method for Maxwell's equations
spellingShingle A nonconforming mixed finite element method for Maxwell's equations
Douglas, Jim
Nonconforming Finite Element Method
Finite Element
Element
Method
title_short A nonconforming mixed finite element method for Maxwell's equations
title_full A nonconforming mixed finite element method for Maxwell's equations
title_fullStr A nonconforming mixed finite element method for Maxwell's equations
title_full_unstemmed A nonconforming mixed finite element method for Maxwell's equations
title_sort A nonconforming mixed finite element method for Maxwell's equations
dc.creator.none.fl_str_mv Douglas, Jim
Santos, Juan Enrique
Sheen, Dongwoo
author Douglas, Jim
author_facet Douglas, Jim
Santos, Juan Enrique
Sheen, Dongwoo
author_role author
author2 Santos, Juan Enrique
Sheen, Dongwoo
author2_role author
author
dc.subject.none.fl_str_mv Nonconforming Finite Element Method
Finite Element
Element
Method
topic Nonconforming Finite Element Method
Finite Element
Element
Method
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
Fil: Douglas, Jim. Purdue University; Estados Unidos
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sheen, Dongwoo. Seoul National University; Corea del Sur
description We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
publishDate 2000
dc.date.none.fl_str_mv 2000-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71630
Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-613
0218-2025
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71630
identifier_str_mv Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-613
0218-2025
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S021820250000032X
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820250000032X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269654755573760
score 13.13397