A nonconforming mixed finite element method for Maxwell's equations
- Autores
- Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
Fil: Douglas, Jim. Purdue University; Estados Unidos
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sheen, Dongwoo. Seoul National University; Corea del Sur - Materia
-
Nonconforming Finite Element Method
Finite Element
Element
Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71630
Ver los metadatos del registro completo
id |
CONICETDig_202cea6a53a4028a73c6bcc86dbf3107 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71630 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonconforming mixed finite element method for Maxwell's equationsDouglas, JimSantos, Juan EnriqueSheen, DongwooNonconforming Finite Element MethodFinite ElementElementMethodhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.Fil: Douglas, Jim. Purdue University; Estados UnidosFil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sheen, Dongwoo. Seoul National University; Corea del SurWorld Scientific2000-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71630Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-6130218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021820250000032Xinfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820250000032Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:43Zoai:ri.conicet.gov.ar:11336/71630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:43.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonconforming mixed finite element method for Maxwell's equations |
title |
A nonconforming mixed finite element method for Maxwell's equations |
spellingShingle |
A nonconforming mixed finite element method for Maxwell's equations Douglas, Jim Nonconforming Finite Element Method Finite Element Element Method |
title_short |
A nonconforming mixed finite element method for Maxwell's equations |
title_full |
A nonconforming mixed finite element method for Maxwell's equations |
title_fullStr |
A nonconforming mixed finite element method for Maxwell's equations |
title_full_unstemmed |
A nonconforming mixed finite element method for Maxwell's equations |
title_sort |
A nonconforming mixed finite element method for Maxwell's equations |
dc.creator.none.fl_str_mv |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo |
author |
Douglas, Jim |
author_facet |
Douglas, Jim Santos, Juan Enrique Sheen, Dongwoo |
author_role |
author |
author2 |
Santos, Juan Enrique Sheen, Dongwoo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Nonconforming Finite Element Method Finite Element Element Method |
topic |
Nonconforming Finite Element Method Finite Element Element Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration. Fil: Douglas, Jim. Purdue University; Estados Unidos Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sheen, Dongwoo. Seoul National University; Corea del Sur |
description |
We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71630 Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-613 0218-2025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/71630 |
identifier_str_mv |
Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; A nonconforming mixed finite element method for Maxwell's equations; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 593-613 0218-2025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S021820250000032X info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820250000032X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269654755573760 |
score |
13.13397 |