Uniqueness of solution to a free boundary problem from combustion
- Autores
- Lederman, Claudia Beatriz; Vázquez, Juan Luis; Wolanski, Noemi Irene
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the uniqueness and agreement between different kinds of solutions for a free boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) ≥ 0, defined in a domain D ⊂ RN × (0, T) and such that ∆u +Xai uxi − ut = 0 in D∩{u > 0}. We also assume that the interior boundary of the positivity set, D ∩ ∂{u > 0}, so-called free boundary, is a regular hypersurface on which the following conditions are satisfied: u = 0, −∂u/∂ν = C. Here ν denotes outward unit spatial normal to the free boundary. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. This problem arises in combustion theory as a limit situation in the propagation of premixed flames (high activation energy limit). The problem admits classical solutions only for good data and for small times. Several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. We investigate conditions under which the three concepts agree and produce a unique solution.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vázquez, Juan Luis. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FREE-BOUNDARY PROBLEM
COMBUSTION
HEAT EQUATION
UNIQUENESS
CLASSICAL SOLUTION
VISCOSITY SOLUTION
LIMIT SOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151909
Ver los metadatos del registro completo
id |
CONICETDig_f1c77e7408b1281fdf158f1c28e545aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uniqueness of solution to a free boundary problem from combustionLederman, Claudia BeatrizVázquez, Juan LuisWolanski, Noemi IreneFREE-BOUNDARY PROBLEMCOMBUSTIONHEAT EQUATIONUNIQUENESSCLASSICAL SOLUTIONVISCOSITY SOLUTIONLIMIT SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the uniqueness and agreement between different kinds of solutions for a free boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) ≥ 0, defined in a domain D ⊂ RN × (0, T) and such that ∆u +Xai uxi − ut = 0 in D∩{u > 0}. We also assume that the interior boundary of the positivity set, D ∩ ∂{u > 0}, so-called free boundary, is a regular hypersurface on which the following conditions are satisfied: u = 0, −∂u/∂ν = C. Here ν denotes outward unit spatial normal to the free boundary. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. This problem arises in combustion theory as a limit situation in the propagation of premixed flames (high activation energy limit). The problem admits classical solutions only for good data and for small times. Several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. We investigate conditions under which the three concepts agree and produce a unique solution.Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vázquez, Juan Luis. Universidad Autónoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2001-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151909Lederman, Claudia Beatriz; Vázquez, Juan Luis; Wolanski, Noemi Irene; Uniqueness of solution to a free boundary problem from combustion; American Mathematical Society; Transactions of the American Mathematical Society; 353; 2; 4-2001; 655-6920002-99471088-6850CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2001-353-02/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2001-353-02/S0002-9947-00-02663-5/S0002-9947-00-02663-5.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:04Zoai:ri.conicet.gov.ar:11336/151909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:04.941CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uniqueness of solution to a free boundary problem from combustion |
title |
Uniqueness of solution to a free boundary problem from combustion |
spellingShingle |
Uniqueness of solution to a free boundary problem from combustion Lederman, Claudia Beatriz FREE-BOUNDARY PROBLEM COMBUSTION HEAT EQUATION UNIQUENESS CLASSICAL SOLUTION VISCOSITY SOLUTION LIMIT SOLUTION |
title_short |
Uniqueness of solution to a free boundary problem from combustion |
title_full |
Uniqueness of solution to a free boundary problem from combustion |
title_fullStr |
Uniqueness of solution to a free boundary problem from combustion |
title_full_unstemmed |
Uniqueness of solution to a free boundary problem from combustion |
title_sort |
Uniqueness of solution to a free boundary problem from combustion |
dc.creator.none.fl_str_mv |
Lederman, Claudia Beatriz Vázquez, Juan Luis Wolanski, Noemi Irene |
author |
Lederman, Claudia Beatriz |
author_facet |
Lederman, Claudia Beatriz Vázquez, Juan Luis Wolanski, Noemi Irene |
author_role |
author |
author2 |
Vázquez, Juan Luis Wolanski, Noemi Irene |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FREE-BOUNDARY PROBLEM COMBUSTION HEAT EQUATION UNIQUENESS CLASSICAL SOLUTION VISCOSITY SOLUTION LIMIT SOLUTION |
topic |
FREE-BOUNDARY PROBLEM COMBUSTION HEAT EQUATION UNIQUENESS CLASSICAL SOLUTION VISCOSITY SOLUTION LIMIT SOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the uniqueness and agreement between different kinds of solutions for a free boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) ≥ 0, defined in a domain D ⊂ RN × (0, T) and such that ∆u +Xai uxi − ut = 0 in D∩{u > 0}. We also assume that the interior boundary of the positivity set, D ∩ ∂{u > 0}, so-called free boundary, is a regular hypersurface on which the following conditions are satisfied: u = 0, −∂u/∂ν = C. Here ν denotes outward unit spatial normal to the free boundary. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. This problem arises in combustion theory as a limit situation in the propagation of premixed flames (high activation energy limit). The problem admits classical solutions only for good data and for small times. Several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. We investigate conditions under which the three concepts agree and produce a unique solution. Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Vázquez, Juan Luis. Universidad Autónoma de Madrid; España Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We investigate the uniqueness and agreement between different kinds of solutions for a free boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) ≥ 0, defined in a domain D ⊂ RN × (0, T) and such that ∆u +Xai uxi − ut = 0 in D∩{u > 0}. We also assume that the interior boundary of the positivity set, D ∩ ∂{u > 0}, so-called free boundary, is a regular hypersurface on which the following conditions are satisfied: u = 0, −∂u/∂ν = C. Here ν denotes outward unit spatial normal to the free boundary. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. This problem arises in combustion theory as a limit situation in the propagation of premixed flames (high activation energy limit). The problem admits classical solutions only for good data and for small times. Several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. We investigate conditions under which the three concepts agree and produce a unique solution. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151909 Lederman, Claudia Beatriz; Vázquez, Juan Luis; Wolanski, Noemi Irene; Uniqueness of solution to a free boundary problem from combustion; American Mathematical Society; Transactions of the American Mathematical Society; 353; 2; 4-2001; 655-692 0002-9947 1088-6850 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151909 |
identifier_str_mv |
Lederman, Claudia Beatriz; Vázquez, Juan Luis; Wolanski, Noemi Irene; Uniqueness of solution to a free boundary problem from combustion; American Mathematical Society; Transactions of the American Mathematical Society; 353; 2; 4-2001; 655-692 0002-9947 1088-6850 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2001-353-02/home.html info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2001-353-02/S0002-9947-00-02663-5/S0002-9947-00-02663-5.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268951944364032 |
score |
13.13397 |