Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian
- Autores
- Bonder, Julián Fernández; Silva, Analia; Spedaletti, Juan Francisco
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study a semilinear problem for the fractional laplacian that is the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains.
Fil: Bonder, Julián Fernández. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
UNIQUENESS RESULTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114547
Ver los metadatos del registro completo
id |
CONICETDig_1b7c4581189616d94bf48aec6f8de2ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114547 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional LaplacianBonder, Julián FernándezSilva, AnaliaSpedaletti, Juan FranciscoFRACTIONAL PARTIAL DIFFERENTIAL EQUATIONSUNIQUENESS RESULTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study a semilinear problem for the fractional laplacian that is the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains.Fil: Bonder, Julián Fernández. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAmerican Mathematical Society2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114547Bonder, Julián Fernández; Silva, Analia; Spedaletti, Juan Francisco; Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian; American Mathematical Society; Proceedings of the American Mathematical Society; 147; 7; 3-2019; 2925-29360002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2019-147-07/S0002-9939-2019-14530-5/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14530info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1704.08203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:00Zoai:ri.conicet.gov.ar:11336/114547instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:00.472CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
title |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
spellingShingle |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian Bonder, Julián Fernández FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS UNIQUENESS RESULTS |
title_short |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
title_full |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
title_fullStr |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
title_full_unstemmed |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
title_sort |
Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian |
dc.creator.none.fl_str_mv |
Bonder, Julián Fernández Silva, Analia Spedaletti, Juan Francisco |
author |
Bonder, Julián Fernández |
author_facet |
Bonder, Julián Fernández Silva, Analia Spedaletti, Juan Francisco |
author_role |
author |
author2 |
Silva, Analia Spedaletti, Juan Francisco |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS UNIQUENESS RESULTS |
topic |
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS UNIQUENESS RESULTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study a semilinear problem for the fractional laplacian that is the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains. Fil: Bonder, Julián Fernández. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Spedaletti, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
In this paper we study a semilinear problem for the fractional laplacian that is the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114547 Bonder, Julián Fernández; Silva, Analia; Spedaletti, Juan Francisco; Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian; American Mathematical Society; Proceedings of the American Mathematical Society; 147; 7; 3-2019; 2925-2936 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/114547 |
identifier_str_mv |
Bonder, Julián Fernández; Silva, Analia; Spedaletti, Juan Francisco; Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian; American Mathematical Society; Proceedings of the American Mathematical Society; 147; 7; 3-2019; 2925-2936 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2019-147-07/S0002-9939-2019-14530-5/ info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14530 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1704.08203 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613963955830784 |
score |
13.069144 |