Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica

Autores
Santucho, Exequiel Miguel Angel; Luege, Mariela; Orlando, Antonio
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
La Tomografía de Impedancia Eléctrica (TIE) es una técnica de ensayo no destructivo que estima las propiedades eléctricas en el interior de un cuerpo, a partir de mediciones electrostáticas tomadas en su contorno. Esta técnica puede ser usada también para determinar defectos como cavidades o fisuras en el interior del material, mediante su identificación con las singularidades en la variación espacial de la función que representa la conductividad eléctrica. Un enfoque común para la solución de este tipo de problemas consiste en su formulación como un problema de optimización topológica, en el cual la función objetivo está dada por una medida de la fidelidad de datos de potencial eléctrico en
el contorno, y las incógnitas a determinar son representadas por las cavidades internas del material. En este trabajo discutimos algunos aspectos de la aplicación de la derivada topológica a este problema. La derivada topológica del funcional de costo es un campo escalar que brinda información acerca de su sensitividad cuando una cavidad infinitesimal es creada en el dominio. Esta propiedad es, por lo tanto, usada en un algoritmo de actualización tal como uno propuesto en (A. Carpio y M. L. Rapún, Inv. Problems, 28 (2012)), a fin de determinar la forma, tamaño y ubicación de defectos en el interior del cuerpo. En este trabajo se presenta además el procedimiento de cálculo de la derivada topológica del funcional de costo, siguiendo la metodología propuesta en (A. A. Novotny y J. Sokolowski, Springer, (2013)) y se desarrollan experimentos numéricos empleando datos sintéticos para las mediciones de contorno, comentándose los resultados obtenidos.
Fil: Santucho, Exequiel Miguel Angel. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Materia
PROBLEMA INVERSO
CAVIDADES
ANALISIS ASINTOTICO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7247

id CONICETDig_c76bbe12e93d948011fa2018d776668c
oai_identifier_str oai:ri.conicet.gov.ar:11336/7247
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia EléctricaSantucho, Exequiel Miguel AngelLuege, MarielaOrlando, AntonioPROBLEMA INVERSOCAVIDADESANALISIS ASINTOTICOhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2La Tomografía de Impedancia Eléctrica (TIE) es una técnica de ensayo no destructivo que estima las propiedades eléctricas en el interior de un cuerpo, a partir de mediciones electrostáticas tomadas en su contorno. Esta técnica puede ser usada también para determinar defectos como cavidades o fisuras en el interior del material, mediante su identificación con las singularidades en la variación espacial de la función que representa la conductividad eléctrica. Un enfoque común para la solución de este tipo de problemas consiste en su formulación como un problema de optimización topológica, en el cual la función objetivo está dada por una medida de la fidelidad de datos de potencial eléctrico en<br />el contorno, y las incógnitas a determinar son representadas por las cavidades internas del material. En este trabajo discutimos algunos aspectos de la aplicación de la derivada topológica a este problema. La derivada topológica del funcional de costo es un campo escalar que brinda información acerca de su sensitividad cuando una cavidad infinitesimal es creada en el dominio. Esta propiedad es, por lo tanto, usada en un algoritmo de actualización tal como uno propuesto en (A. Carpio y M. L. Rapún, Inv. Problems, 28 (2012)), a fin de determinar la forma, tamaño y ubicación de defectos en el interior del cuerpo. En este trabajo se presenta además el procedimiento de cálculo de la derivada topológica del funcional de costo, siguiendo la metodología propuesta en (A. A. Novotny y J. Sokolowski, Springer, (2013)) y se desarrollan experimentos numéricos empleando datos sintéticos para las mediciones de contorno, comentándose los resultados obtenidos.Fil: Santucho, Exequiel Miguel Angel. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaAsociación Argentina de Mecánica Computacional2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7247Santucho, Exequiel Miguel Angel; Luege, Mariela; Orlando, Antonio; Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXIII; 32; 9-2014; 2037-20501666-6070spainfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:36:27Zoai:ri.conicet.gov.ar:11336/7247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:36:28.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
title Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
spellingShingle Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
Santucho, Exequiel Miguel Angel
PROBLEMA INVERSO
CAVIDADES
ANALISIS ASINTOTICO
title_short Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
title_full Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
title_fullStr Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
title_full_unstemmed Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
title_sort Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica
dc.creator.none.fl_str_mv Santucho, Exequiel Miguel Angel
Luege, Mariela
Orlando, Antonio
author Santucho, Exequiel Miguel Angel
author_facet Santucho, Exequiel Miguel Angel
Luege, Mariela
Orlando, Antonio
author_role author
author2 Luege, Mariela
Orlando, Antonio
author2_role author
author
dc.subject.none.fl_str_mv PROBLEMA INVERSO
CAVIDADES
ANALISIS ASINTOTICO
topic PROBLEMA INVERSO
CAVIDADES
ANALISIS ASINTOTICO
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv La Tomografía de Impedancia Eléctrica (TIE) es una técnica de ensayo no destructivo que estima las propiedades eléctricas en el interior de un cuerpo, a partir de mediciones electrostáticas tomadas en su contorno. Esta técnica puede ser usada también para determinar defectos como cavidades o fisuras en el interior del material, mediante su identificación con las singularidades en la variación espacial de la función que representa la conductividad eléctrica. Un enfoque común para la solución de este tipo de problemas consiste en su formulación como un problema de optimización topológica, en el cual la función objetivo está dada por una medida de la fidelidad de datos de potencial eléctrico en<br />el contorno, y las incógnitas a determinar son representadas por las cavidades internas del material. En este trabajo discutimos algunos aspectos de la aplicación de la derivada topológica a este problema. La derivada topológica del funcional de costo es un campo escalar que brinda información acerca de su sensitividad cuando una cavidad infinitesimal es creada en el dominio. Esta propiedad es, por lo tanto, usada en un algoritmo de actualización tal como uno propuesto en (A. Carpio y M. L. Rapún, Inv. Problems, 28 (2012)), a fin de determinar la forma, tamaño y ubicación de defectos en el interior del cuerpo. En este trabajo se presenta además el procedimiento de cálculo de la derivada topológica del funcional de costo, siguiendo la metodología propuesta en (A. A. Novotny y J. Sokolowski, Springer, (2013)) y se desarrollan experimentos numéricos empleando datos sintéticos para las mediciones de contorno, comentándose los resultados obtenidos.
Fil: Santucho, Exequiel Miguel Angel. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
description La Tomografía de Impedancia Eléctrica (TIE) es una técnica de ensayo no destructivo que estima las propiedades eléctricas en el interior de un cuerpo, a partir de mediciones electrostáticas tomadas en su contorno. Esta técnica puede ser usada también para determinar defectos como cavidades o fisuras en el interior del material, mediante su identificación con las singularidades en la variación espacial de la función que representa la conductividad eléctrica. Un enfoque común para la solución de este tipo de problemas consiste en su formulación como un problema de optimización topológica, en el cual la función objetivo está dada por una medida de la fidelidad de datos de potencial eléctrico en<br />el contorno, y las incógnitas a determinar son representadas por las cavidades internas del material. En este trabajo discutimos algunos aspectos de la aplicación de la derivada topológica a este problema. La derivada topológica del funcional de costo es un campo escalar que brinda información acerca de su sensitividad cuando una cavidad infinitesimal es creada en el dominio. Esta propiedad es, por lo tanto, usada en un algoritmo de actualización tal como uno propuesto en (A. Carpio y M. L. Rapún, Inv. Problems, 28 (2012)), a fin de determinar la forma, tamaño y ubicación de defectos en el interior del cuerpo. En este trabajo se presenta además el procedimiento de cálculo de la derivada topológica del funcional de costo, siguiendo la metodología propuesta en (A. A. Novotny y J. Sokolowski, Springer, (2013)) y se desarrollan experimentos numéricos empleando datos sintéticos para las mediciones de contorno, comentándose los resultados obtenidos.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7247
Santucho, Exequiel Miguel Angel; Luege, Mariela; Orlando, Antonio; Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXIII; 32; 9-2014; 2037-2050
1666-6070
url http://hdl.handle.net/11336/7247
identifier_str_mv Santucho, Exequiel Miguel Angel; Luege, Mariela; Orlando, Antonio; Observaciones Acerca de la Aplicación de la Derivada Topológica en la Identificación de Cavidades mediante la Tomografía de Impedancia Eléctrica; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXIII; 32; 9-2014; 2037-2050
1666-6070
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4804
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083487645302784
score 12.891075