Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral

Autores
Fernández Corazza, Mariano
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
von Ellenrieder, Nicolás
Muravchik, Carlos Horacio
Valentinuzzi, Máximo Eugenio
González Lima, Raúl
Rufiner, Hugo Leonardo
Descripción
La tomografía de impedancia eléctrica (EIT) permite estimar la conductividad eléctrica interna de un cuerpo. Consiste en aplicar una corriente eléctrica sobre su frontera y medir el potencial eléctrico resultante mediante un arreglo de sensores. Es considerada como una potencial herramienta de diagnóstico médico, caracterizada principalmente por su portabilidad y relativo bajo costo. Si bien se encuentra aún en etapa de desarrollo, está comenzando a ser utilizada en centros de salud para la caracterización del aparato cardio-respiratorio y existe un creciente interés en su aplicación a las neurociencias. Por ejemplo, es posible utilizar la EIT para construir modelos virtuales de la cabeza más precisos mediante la estimación de la conductividad eléctrica de los principales tejidos de la cabeza como un conjunto de parámetros relativamente pequeño, modalidad denominada EIT paramétrico. También se puede utilizar la EIT para generar un mapa de la distribución de conductividad eléctrica interna de un objeto, llamado problema de reconstrucción en EIT. Los cambios de la conductividad eléctrica en la cabeza pueden estar asociados a la actividad neuronal, a focos epilépticos, a accidentes cerebro-vasculares o a tumores. Ambas modalidades de EIT requieren la resolución del problema directo (PD), que consiste en el cálculo de la distribución de potencial eléctrico en el objeto originada por la inyección de corriente sobre su superficie, suponiendo que la conductividad interna es conocida. La estimulación de corriente continua transcraneal (tDCS) es físicamente muy similar a la EIT, pero la corriente eléctrica es aplicada sobre el cuero cabelludo de modo de alterar la tasa de disparos de poblaciones de neuronas en una región de interés. Es una potencial alternativa al empleo de psicofármacos para tratar desórdenes como epilepsia o depresiones. En esta tesis se desarrollan y analizan nuevos métodos para distintos problemas de EIT, centrándose mayormente en aplicaciones a la cabeza humana, y de tDCS. En primer lugar, se describen soluciones analíticas y numéricas para el PD en EIT, estas últimas basadas en el método de los elementos finitos. Luego, se desarrolla un nuevo procedimiento para resolver el PD con bajo costo computacional basado en la formulación del PD en electroencefalografía (EEG). Se propone un nuevo método para determinar la forma de onda de la fuente de corriente que permite desafectar la actividad propia del cerebro con un bajo número de muestras temporales. En EIT paramétrico, se utiliza la cota de Cramér-Rao (CRB) para determinar pares de electrodos convenientes para la inyección de corriente y para analizar límites teóricos en la estimación de las conductividades del cráneo y del cuero cabelludo, modelizándolos como tejidos isótropos y anisótropos. A su vez, se propone el estimador de máxima verosimilitud (MLE) como herramienta para realizar las estimaciones. El MLE se aplica a mediciones simuladas y reales de EIT mostrando un desempeño muy cercano a los límites teóricos. Para el problema de reconstrucción en EIT se adapta el algoritmo sLORETA, muy utilizado en el problema de localización de fuentes de actividad neuronal en EEG. Además, se lo modifica levemente para incorporar la regularización espacial de Laplace. Por otro lado, se introduce la utilización de filtros espaciales adaptivos para localizar cambios de conductividad de pequeño tamaño y estimar su variación temporal. Los resultados muestran mejoras en sesgo y resolución, en comparación con algoritmos de reconstrucción típicos en EIT. Estas mejoras son potencialmente ventajosas en la detección de accidentes cerebro-vasculares y en la localización indirecta de fuentes de actividad neuronal. En tDCS, se desarrolla un nuevo algoritmo para la determinación de patrones de inyección de corriente basado en el principio de reciprocidad y que considera restricciones de seguridad y de hardware. Los resultados obtenidos a partir de simulaciones muestran que el desempeño de dicho algoritmo es comparable al desempeño de algoritmos de optimización tradicionales cuyas soluciones implicarían un equipamiento comparativamente más complejo y costoso. Los métodos desarrollados en la tesis son comparados con métodos pre-existentes y validados a través de simulaciones numéricas por computadora, mediciones sobre maquetas experimentales (ó fantomas) y, de acuerdo con las posibilidades experimentales y respetando los principios de la bioética, mediciones reales sobre humanos.
Electrical impedance tomography (EIT) is a technique to estimate the electrical conductivity of an object. It consists in the application of an electric current on its boundary and the measurement of the resulting electric potential with a sensor array. In clinical practise, it is considered as a potential diagnostic tool characterized by its portability and relatively low cost. While it is still in a development stage, it is starting to be used in health centers to characterize the cardio-respiratory system. In turn, there is an increasing interest of EIT in neuroscience. For example, EIT can be used to estimate the electrical conductivity of the main tissues of the head as a set of a relatively low number of parameters, which is known as bounded or parametric EIT. This is useful for several medical imaging techniques that require realistic and accurate virtual models of the head. EIT can also be used to generate a map of the internal distribution of the electrical conductivity, known as the reconstruction problem. Tracking conductivity changes inside the head is of great interest as they may be related to neuronal activity, epileptic foci, acute stroke, or tumors. Both modalities of EIT require the solution of the EIT forward problem (FP), i.e., the computation of the electric potential distribution due to current injection on the scalp assuming that the electrical conductivity is known. The transcranial direct current stimulation (tDCS) is another technique which is physically very similar to EIT. It consists in injecting a small electric current in a convenient way such that it stimulates specific neuronal populations, increasing or decreasing their firing rate. It is considered as an alternative to psychoactive drugs in the treatment of brain disorders such as epilepsy or depression. This thesis describes the development and analysis of new methods for EIT FP, parametric EIT, reconstruction in EIT, and tDCS, focusing primarily (although not exclusively) in applications to human head. We first describe analytical and numerical approaches for the EIT FP, where the numerical approach is based on the finite element method. Then, we develop a new procedure to solve the EIT FP based on the electroencephalography (EEG) FP formulation, which results in computational advantages. We propose a new method to determine the waveform of the electric current source such that the neuronal activity of the brain can be neglected with the smallest possible number of time samples. In parametric EIT, we use the Cramér-Rao bound (CRB) to determine convenient electrode pairs for the current injection and theoretical limits in the estimation of the electrical conductivity of the main tissues of the head, which we model as isotropic and anisotropic. We propose the maximum likelihood estimator (MLE) to estimate these conductivities and we test it with simulated and real EIT measurements, showing that the MLE performs close to the CRB. We adapt the sLORETA algorithm to the reconstruction problem in EIT. This algorithm is being widely used in the source localization problem in EEG. We also slightly modify it to include the Laplace smoothing prior in the solution. Likewise, we introduce the use of adaptive spatial filters in the localization of conductivity changes and the estimation of its time courses from EIT measurements. The results show improvements over typical EIT algorithms. These improvements may benefit the early detection of acute strokes and the localization of neuronal activity using EIT. In tDCS, we develop a new algorithm to determine convenient current injection patterns. It is based on the reciprocity principle and considers hardware and safety constraints. Our simulation results show that this method performs similarly to other commonly used algorithms that require more complex and costly equipments. The methods we develop and study in this thesis are compared with pre-existing methods and are validated through numerical simulations, measurements on phantoms and, according to the experimental possibilities and bioethical principles, humans.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
Materia
Ingeniería
tomografía de impedancia eléctrica (EIT)
Cráneo
Epilepsia
problema directo
Técnicas de Estimación
tomografía de impedancia eléctrica paramétrica (bEIT)
forma de onda
problema inverso
reconstrucción
conductividad eléctrica
electroencefalografía (EEG)
Tikhonov
sLORETA
filtros espaciales adaptivos
estimulación de corriente continua transcraneal (tDCS)
accidente cerebrovascular (ACV)
actividad neuronal
procesamiento estadístico de señales
procesamiento de señales e imágenes médicas
ingeniería biomédica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/45012

id SEDICI_02d7e52f2503839796f246c524c5af10
oai_identifier_str oai:sedici.unlp.edu.ar:10915/45012
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebralFernández Corazza, MarianoIngenieríatomografía de impedancia eléctrica (EIT)CráneoEpilepsiaproblema directoTécnicas de Estimacióntomografía de impedancia eléctrica paramétrica (bEIT)forma de ondaproblema inversoreconstrucciónconductividad eléctricaelectroencefalografía (EEG)TikhonovsLORETAfiltros espaciales adaptivosestimulación de corriente continua transcraneal (tDCS)accidente cerebrovascular (ACV)actividad neuronalprocesamiento estadístico de señalesprocesamiento de señales e imágenes médicasingeniería biomédicaLa tomografía de impedancia eléctrica (EIT) permite estimar la conductividad eléctrica interna de un cuerpo. Consiste en aplicar una corriente eléctrica sobre su frontera y medir el potencial eléctrico resultante mediante un arreglo de sensores. Es considerada como una potencial herramienta de diagnóstico médico, caracterizada principalmente por su portabilidad y relativo bajo costo. Si bien se encuentra aún en etapa de desarrollo, está comenzando a ser utilizada en centros de salud para la caracterización del aparato cardio-respiratorio y existe un creciente interés en su aplicación a las neurociencias. Por ejemplo, es posible utilizar la EIT para construir modelos virtuales de la cabeza más precisos mediante la estimación de la conductividad eléctrica de los principales tejidos de la cabeza como un conjunto de parámetros relativamente pequeño, modalidad denominada EIT paramétrico. También se puede utilizar la EIT para generar un mapa de la distribución de conductividad eléctrica interna de un objeto, llamado problema de reconstrucción en EIT. Los cambios de la conductividad eléctrica en la cabeza pueden estar asociados a la actividad neuronal, a focos epilépticos, a accidentes cerebro-vasculares o a tumores. Ambas modalidades de EIT requieren la resolución del problema directo (PD), que consiste en el cálculo de la distribución de potencial eléctrico en el objeto originada por la inyección de corriente sobre su superficie, suponiendo que la conductividad interna es conocida. La estimulación de corriente continua transcraneal (tDCS) es físicamente muy similar a la EIT, pero la corriente eléctrica es aplicada sobre el cuero cabelludo de modo de alterar la tasa de disparos de poblaciones de neuronas en una región de interés. Es una potencial alternativa al empleo de psicofármacos para tratar desórdenes como epilepsia o depresiones. En esta tesis se desarrollan y analizan nuevos métodos para distintos problemas de EIT, centrándose mayormente en aplicaciones a la cabeza humana, y de tDCS. En primer lugar, se describen soluciones analíticas y numéricas para el PD en EIT, estas últimas basadas en el método de los elementos finitos. Luego, se desarrolla un nuevo procedimiento para resolver el PD con bajo costo computacional basado en la formulación del PD en electroencefalografía (EEG). Se propone un nuevo método para determinar la forma de onda de la fuente de corriente que permite desafectar la actividad propia del cerebro con un bajo número de muestras temporales. En EIT paramétrico, se utiliza la cota de Cramér-Rao (CRB) para determinar pares de electrodos convenientes para la inyección de corriente y para analizar límites teóricos en la estimación de las conductividades del cráneo y del cuero cabelludo, modelizándolos como tejidos isótropos y anisótropos. A su vez, se propone el estimador de máxima verosimilitud (MLE) como herramienta para realizar las estimaciones. El MLE se aplica a mediciones simuladas y reales de EIT mostrando un desempeño muy cercano a los límites teóricos. Para el problema de reconstrucción en EIT se adapta el algoritmo sLORETA, muy utilizado en el problema de localización de fuentes de actividad neuronal en EEG. Además, se lo modifica levemente para incorporar la regularización espacial de Laplace. Por otro lado, se introduce la utilización de filtros espaciales adaptivos para localizar cambios de conductividad de pequeño tamaño y estimar su variación temporal. Los resultados muestran mejoras en sesgo y resolución, en comparación con algoritmos de reconstrucción típicos en EIT. Estas mejoras son potencialmente ventajosas en la detección de accidentes cerebro-vasculares y en la localización indirecta de fuentes de actividad neuronal. En tDCS, se desarrolla un nuevo algoritmo para la determinación de patrones de inyección de corriente basado en el principio de reciprocidad y que considera restricciones de seguridad y de hardware. Los resultados obtenidos a partir de simulaciones muestran que el desempeño de dicho algoritmo es comparable al desempeño de algoritmos de optimización tradicionales cuyas soluciones implicarían un equipamiento comparativamente más complejo y costoso. Los métodos desarrollados en la tesis son comparados con métodos pre-existentes y validados a través de simulaciones numéricas por computadora, mediciones sobre maquetas experimentales (ó fantomas) y, de acuerdo con las posibilidades experimentales y respetando los principios de la bioética, mediciones reales sobre humanos.Electrical impedance tomography (EIT) is a technique to estimate the electrical conductivity of an object. It consists in the application of an electric current on its boundary and the measurement of the resulting electric potential with a sensor array. In clinical practise, it is considered as a potential diagnostic tool characterized by its portability and relatively low cost. While it is still in a development stage, it is starting to be used in health centers to characterize the cardio-respiratory system. In turn, there is an increasing interest of EIT in neuroscience. For example, EIT can be used to estimate the electrical conductivity of the main tissues of the head as a set of a relatively low number of parameters, which is known as bounded or parametric EIT. This is useful for several medical imaging techniques that require realistic and accurate virtual models of the head. EIT can also be used to generate a map of the internal distribution of the electrical conductivity, known as the reconstruction problem. Tracking conductivity changes inside the head is of great interest as they may be related to neuronal activity, epileptic foci, acute stroke, or tumors. Both modalities of EIT require the solution of the EIT forward problem (FP), i.e., the computation of the electric potential distribution due to current injection on the scalp assuming that the electrical conductivity is known. The transcranial direct current stimulation (tDCS) is another technique which is physically very similar to EIT. It consists in injecting a small electric current in a convenient way such that it stimulates specific neuronal populations, increasing or decreasing their firing rate. It is considered as an alternative to psychoactive drugs in the treatment of brain disorders such as epilepsy or depression. This thesis describes the development and analysis of new methods for EIT FP, parametric EIT, reconstruction in EIT, and tDCS, focusing primarily (although not exclusively) in applications to human head. We first describe analytical and numerical approaches for the EIT FP, where the numerical approach is based on the finite element method. Then, we develop a new procedure to solve the EIT FP based on the electroencephalography (EEG) FP formulation, which results in computational advantages. We propose a new method to determine the waveform of the electric current source such that the neuronal activity of the brain can be neglected with the smallest possible number of time samples. In parametric EIT, we use the Cramér-Rao bound (CRB) to determine convenient electrode pairs for the current injection and theoretical limits in the estimation of the electrical conductivity of the main tissues of the head, which we model as isotropic and anisotropic. We propose the maximum likelihood estimator (MLE) to estimate these conductivities and we test it with simulated and real EIT measurements, showing that the MLE performs close to the CRB. We adapt the sLORETA algorithm to the reconstruction problem in EIT. This algorithm is being widely used in the source localization problem in EEG. We also slightly modify it to include the Laplace smoothing prior in the solution. Likewise, we introduce the use of adaptive spatial filters in the localization of conductivity changes and the estimation of its time courses from EIT measurements. The results show improvements over typical EIT algorithms. These improvements may benefit the early detection of acute strokes and the localization of neuronal activity using EIT. In tDCS, we develop a new algorithm to determine convenient current injection patterns. It is based on the reciprocity principle and considers hardware and safety constraints. Our simulation results show that this method performs similarly to other commonly used algorithms that require more complex and costly equipments. The methods we develop and study in this thesis are compared with pre-existing methods and are validated through numerical simulations, measurements on phantoms and, according to the experimental possibilities and bioethical principles, humans.Doctor en IngenieríaUniversidad Nacional de La PlataFacultad de Ingenieríavon Ellenrieder, NicolásMuravchik, Carlos HoracioValentinuzzi, Máximo EugenioGonzález Lima, RaúlRufiner, Hugo Leonardo2015-03-18info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/45012https://doi.org/10.35537/10915/45012spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:45:28Zoai:sedici.unlp.edu.ar:10915/45012Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:45:28.926SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
title Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
spellingShingle Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
Fernández Corazza, Mariano
Ingeniería
tomografía de impedancia eléctrica (EIT)
Cráneo
Epilepsia
problema directo
Técnicas de Estimación
tomografía de impedancia eléctrica paramétrica (bEIT)
forma de onda
problema inverso
reconstrucción
conductividad eléctrica
electroencefalografía (EEG)
Tikhonov
sLORETA
filtros espaciales adaptivos
estimulación de corriente continua transcraneal (tDCS)
accidente cerebrovascular (ACV)
actividad neuronal
procesamiento estadístico de señales
procesamiento de señales e imágenes médicas
ingeniería biomédica
title_short Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
title_full Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
title_fullStr Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
title_full_unstemmed Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
title_sort Procesamiento de señales de tomografía de impedancia eléctrica para el estudio de la actividad cerebral
dc.creator.none.fl_str_mv Fernández Corazza, Mariano
author Fernández Corazza, Mariano
author_facet Fernández Corazza, Mariano
author_role author
dc.contributor.none.fl_str_mv von Ellenrieder, Nicolás
Muravchik, Carlos Horacio
Valentinuzzi, Máximo Eugenio
González Lima, Raúl
Rufiner, Hugo Leonardo
dc.subject.none.fl_str_mv Ingeniería
tomografía de impedancia eléctrica (EIT)
Cráneo
Epilepsia
problema directo
Técnicas de Estimación
tomografía de impedancia eléctrica paramétrica (bEIT)
forma de onda
problema inverso
reconstrucción
conductividad eléctrica
electroencefalografía (EEG)
Tikhonov
sLORETA
filtros espaciales adaptivos
estimulación de corriente continua transcraneal (tDCS)
accidente cerebrovascular (ACV)
actividad neuronal
procesamiento estadístico de señales
procesamiento de señales e imágenes médicas
ingeniería biomédica
topic Ingeniería
tomografía de impedancia eléctrica (EIT)
Cráneo
Epilepsia
problema directo
Técnicas de Estimación
tomografía de impedancia eléctrica paramétrica (bEIT)
forma de onda
problema inverso
reconstrucción
conductividad eléctrica
electroencefalografía (EEG)
Tikhonov
sLORETA
filtros espaciales adaptivos
estimulación de corriente continua transcraneal (tDCS)
accidente cerebrovascular (ACV)
actividad neuronal
procesamiento estadístico de señales
procesamiento de señales e imágenes médicas
ingeniería biomédica
dc.description.none.fl_txt_mv La tomografía de impedancia eléctrica (EIT) permite estimar la conductividad eléctrica interna de un cuerpo. Consiste en aplicar una corriente eléctrica sobre su frontera y medir el potencial eléctrico resultante mediante un arreglo de sensores. Es considerada como una potencial herramienta de diagnóstico médico, caracterizada principalmente por su portabilidad y relativo bajo costo. Si bien se encuentra aún en etapa de desarrollo, está comenzando a ser utilizada en centros de salud para la caracterización del aparato cardio-respiratorio y existe un creciente interés en su aplicación a las neurociencias. Por ejemplo, es posible utilizar la EIT para construir modelos virtuales de la cabeza más precisos mediante la estimación de la conductividad eléctrica de los principales tejidos de la cabeza como un conjunto de parámetros relativamente pequeño, modalidad denominada EIT paramétrico. También se puede utilizar la EIT para generar un mapa de la distribución de conductividad eléctrica interna de un objeto, llamado problema de reconstrucción en EIT. Los cambios de la conductividad eléctrica en la cabeza pueden estar asociados a la actividad neuronal, a focos epilépticos, a accidentes cerebro-vasculares o a tumores. Ambas modalidades de EIT requieren la resolución del problema directo (PD), que consiste en el cálculo de la distribución de potencial eléctrico en el objeto originada por la inyección de corriente sobre su superficie, suponiendo que la conductividad interna es conocida. La estimulación de corriente continua transcraneal (tDCS) es físicamente muy similar a la EIT, pero la corriente eléctrica es aplicada sobre el cuero cabelludo de modo de alterar la tasa de disparos de poblaciones de neuronas en una región de interés. Es una potencial alternativa al empleo de psicofármacos para tratar desórdenes como epilepsia o depresiones. En esta tesis se desarrollan y analizan nuevos métodos para distintos problemas de EIT, centrándose mayormente en aplicaciones a la cabeza humana, y de tDCS. En primer lugar, se describen soluciones analíticas y numéricas para el PD en EIT, estas últimas basadas en el método de los elementos finitos. Luego, se desarrolla un nuevo procedimiento para resolver el PD con bajo costo computacional basado en la formulación del PD en electroencefalografía (EEG). Se propone un nuevo método para determinar la forma de onda de la fuente de corriente que permite desafectar la actividad propia del cerebro con un bajo número de muestras temporales. En EIT paramétrico, se utiliza la cota de Cramér-Rao (CRB) para determinar pares de electrodos convenientes para la inyección de corriente y para analizar límites teóricos en la estimación de las conductividades del cráneo y del cuero cabelludo, modelizándolos como tejidos isótropos y anisótropos. A su vez, se propone el estimador de máxima verosimilitud (MLE) como herramienta para realizar las estimaciones. El MLE se aplica a mediciones simuladas y reales de EIT mostrando un desempeño muy cercano a los límites teóricos. Para el problema de reconstrucción en EIT se adapta el algoritmo sLORETA, muy utilizado en el problema de localización de fuentes de actividad neuronal en EEG. Además, se lo modifica levemente para incorporar la regularización espacial de Laplace. Por otro lado, se introduce la utilización de filtros espaciales adaptivos para localizar cambios de conductividad de pequeño tamaño y estimar su variación temporal. Los resultados muestran mejoras en sesgo y resolución, en comparación con algoritmos de reconstrucción típicos en EIT. Estas mejoras son potencialmente ventajosas en la detección de accidentes cerebro-vasculares y en la localización indirecta de fuentes de actividad neuronal. En tDCS, se desarrolla un nuevo algoritmo para la determinación de patrones de inyección de corriente basado en el principio de reciprocidad y que considera restricciones de seguridad y de hardware. Los resultados obtenidos a partir de simulaciones muestran que el desempeño de dicho algoritmo es comparable al desempeño de algoritmos de optimización tradicionales cuyas soluciones implicarían un equipamiento comparativamente más complejo y costoso. Los métodos desarrollados en la tesis son comparados con métodos pre-existentes y validados a través de simulaciones numéricas por computadora, mediciones sobre maquetas experimentales (ó fantomas) y, de acuerdo con las posibilidades experimentales y respetando los principios de la bioética, mediciones reales sobre humanos.
Electrical impedance tomography (EIT) is a technique to estimate the electrical conductivity of an object. It consists in the application of an electric current on its boundary and the measurement of the resulting electric potential with a sensor array. In clinical practise, it is considered as a potential diagnostic tool characterized by its portability and relatively low cost. While it is still in a development stage, it is starting to be used in health centers to characterize the cardio-respiratory system. In turn, there is an increasing interest of EIT in neuroscience. For example, EIT can be used to estimate the electrical conductivity of the main tissues of the head as a set of a relatively low number of parameters, which is known as bounded or parametric EIT. This is useful for several medical imaging techniques that require realistic and accurate virtual models of the head. EIT can also be used to generate a map of the internal distribution of the electrical conductivity, known as the reconstruction problem. Tracking conductivity changes inside the head is of great interest as they may be related to neuronal activity, epileptic foci, acute stroke, or tumors. Both modalities of EIT require the solution of the EIT forward problem (FP), i.e., the computation of the electric potential distribution due to current injection on the scalp assuming that the electrical conductivity is known. The transcranial direct current stimulation (tDCS) is another technique which is physically very similar to EIT. It consists in injecting a small electric current in a convenient way such that it stimulates specific neuronal populations, increasing or decreasing their firing rate. It is considered as an alternative to psychoactive drugs in the treatment of brain disorders such as epilepsy or depression. This thesis describes the development and analysis of new methods for EIT FP, parametric EIT, reconstruction in EIT, and tDCS, focusing primarily (although not exclusively) in applications to human head. We first describe analytical and numerical approaches for the EIT FP, where the numerical approach is based on the finite element method. Then, we develop a new procedure to solve the EIT FP based on the electroencephalography (EEG) FP formulation, which results in computational advantages. We propose a new method to determine the waveform of the electric current source such that the neuronal activity of the brain can be neglected with the smallest possible number of time samples. In parametric EIT, we use the Cramér-Rao bound (CRB) to determine convenient electrode pairs for the current injection and theoretical limits in the estimation of the electrical conductivity of the main tissues of the head, which we model as isotropic and anisotropic. We propose the maximum likelihood estimator (MLE) to estimate these conductivities and we test it with simulated and real EIT measurements, showing that the MLE performs close to the CRB. We adapt the sLORETA algorithm to the reconstruction problem in EIT. This algorithm is being widely used in the source localization problem in EEG. We also slightly modify it to include the Laplace smoothing prior in the solution. Likewise, we introduce the use of adaptive spatial filters in the localization of conductivity changes and the estimation of its time courses from EIT measurements. The results show improvements over typical EIT algorithms. These improvements may benefit the early detection of acute strokes and the localization of neuronal activity using EIT. In tDCS, we develop a new algorithm to determine convenient current injection patterns. It is based on the reciprocity principle and considers hardware and safety constraints. Our simulation results show that this method performs similarly to other commonly used algorithms that require more complex and costly equipments. The methods we develop and study in this thesis are compared with pre-existing methods and are validated through numerical simulations, measurements on phantoms and, according to the experimental possibilities and bioethical principles, humans.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
description La tomografía de impedancia eléctrica (EIT) permite estimar la conductividad eléctrica interna de un cuerpo. Consiste en aplicar una corriente eléctrica sobre su frontera y medir el potencial eléctrico resultante mediante un arreglo de sensores. Es considerada como una potencial herramienta de diagnóstico médico, caracterizada principalmente por su portabilidad y relativo bajo costo. Si bien se encuentra aún en etapa de desarrollo, está comenzando a ser utilizada en centros de salud para la caracterización del aparato cardio-respiratorio y existe un creciente interés en su aplicación a las neurociencias. Por ejemplo, es posible utilizar la EIT para construir modelos virtuales de la cabeza más precisos mediante la estimación de la conductividad eléctrica de los principales tejidos de la cabeza como un conjunto de parámetros relativamente pequeño, modalidad denominada EIT paramétrico. También se puede utilizar la EIT para generar un mapa de la distribución de conductividad eléctrica interna de un objeto, llamado problema de reconstrucción en EIT. Los cambios de la conductividad eléctrica en la cabeza pueden estar asociados a la actividad neuronal, a focos epilépticos, a accidentes cerebro-vasculares o a tumores. Ambas modalidades de EIT requieren la resolución del problema directo (PD), que consiste en el cálculo de la distribución de potencial eléctrico en el objeto originada por la inyección de corriente sobre su superficie, suponiendo que la conductividad interna es conocida. La estimulación de corriente continua transcraneal (tDCS) es físicamente muy similar a la EIT, pero la corriente eléctrica es aplicada sobre el cuero cabelludo de modo de alterar la tasa de disparos de poblaciones de neuronas en una región de interés. Es una potencial alternativa al empleo de psicofármacos para tratar desórdenes como epilepsia o depresiones. En esta tesis se desarrollan y analizan nuevos métodos para distintos problemas de EIT, centrándose mayormente en aplicaciones a la cabeza humana, y de tDCS. En primer lugar, se describen soluciones analíticas y numéricas para el PD en EIT, estas últimas basadas en el método de los elementos finitos. Luego, se desarrolla un nuevo procedimiento para resolver el PD con bajo costo computacional basado en la formulación del PD en electroencefalografía (EEG). Se propone un nuevo método para determinar la forma de onda de la fuente de corriente que permite desafectar la actividad propia del cerebro con un bajo número de muestras temporales. En EIT paramétrico, se utiliza la cota de Cramér-Rao (CRB) para determinar pares de electrodos convenientes para la inyección de corriente y para analizar límites teóricos en la estimación de las conductividades del cráneo y del cuero cabelludo, modelizándolos como tejidos isótropos y anisótropos. A su vez, se propone el estimador de máxima verosimilitud (MLE) como herramienta para realizar las estimaciones. El MLE se aplica a mediciones simuladas y reales de EIT mostrando un desempeño muy cercano a los límites teóricos. Para el problema de reconstrucción en EIT se adapta el algoritmo sLORETA, muy utilizado en el problema de localización de fuentes de actividad neuronal en EEG. Además, se lo modifica levemente para incorporar la regularización espacial de Laplace. Por otro lado, se introduce la utilización de filtros espaciales adaptivos para localizar cambios de conductividad de pequeño tamaño y estimar su variación temporal. Los resultados muestran mejoras en sesgo y resolución, en comparación con algoritmos de reconstrucción típicos en EIT. Estas mejoras son potencialmente ventajosas en la detección de accidentes cerebro-vasculares y en la localización indirecta de fuentes de actividad neuronal. En tDCS, se desarrolla un nuevo algoritmo para la determinación de patrones de inyección de corriente basado en el principio de reciprocidad y que considera restricciones de seguridad y de hardware. Los resultados obtenidos a partir de simulaciones muestran que el desempeño de dicho algoritmo es comparable al desempeño de algoritmos de optimización tradicionales cuyas soluciones implicarían un equipamiento comparativamente más complejo y costoso. Los métodos desarrollados en la tesis son comparados con métodos pre-existentes y validados a través de simulaciones numéricas por computadora, mediciones sobre maquetas experimentales (ó fantomas) y, de acuerdo con las posibilidades experimentales y respetando los principios de la bioética, mediciones reales sobre humanos.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-18
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/45012
https://doi.org/10.35537/10915/45012
url http://sedici.unlp.edu.ar/handle/10915/45012
https://doi.org/10.35537/10915/45012
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532190900551680
score 13.001348