Laplacian flow of homogeneous G 2 -structures and its solitons

Autores
Lauret, Jorge Ruben
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
53C44 (PRIMARY)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60558

id CONICETDig_c69305c6ba6642a07624f9f236c686ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/60558
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Laplacian flow of homogeneous G 2 -structures and its solitonsLauret, Jorge Ruben53C44 (PRIMARY)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaLondon Mathematical Society2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60558Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-5600024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12014info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:47Zoai:ri.conicet.gov.ar:11336/60558instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:47.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Laplacian flow of homogeneous G 2 -structures and its solitons
title Laplacian flow of homogeneous G 2 -structures and its solitons
spellingShingle Laplacian flow of homogeneous G 2 -structures and its solitons
Lauret, Jorge Ruben
53C44 (PRIMARY)
title_short Laplacian flow of homogeneous G 2 -structures and its solitons
title_full Laplacian flow of homogeneous G 2 -structures and its solitons
title_fullStr Laplacian flow of homogeneous G 2 -structures and its solitons
title_full_unstemmed Laplacian flow of homogeneous G 2 -structures and its solitons
title_sort Laplacian flow of homogeneous G 2 -structures and its solitons
dc.creator.none.fl_str_mv Lauret, Jorge Ruben
author Lauret, Jorge Ruben
author_facet Lauret, Jorge Ruben
author_role author
dc.subject.none.fl_str_mv 53C44 (PRIMARY)
topic 53C44 (PRIMARY)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60558
Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-560
0024-6115
1460-244X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60558
identifier_str_mv Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-560
0024-6115
1460-244X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12014
info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv London Mathematical Society
publisher.none.fl_str_mv London Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614388656373760
score 13.070432