Laplacian flow of homogeneous G 2 -structures and its solitons
- Autores
- Lauret, Jorge Ruben
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
- 53C44 (PRIMARY)
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60558
Ver los metadatos del registro completo
id |
CONICETDig_c69305c6ba6642a07624f9f236c686ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60558 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Laplacian flow of homogeneous G 2 -structures and its solitonsLauret, Jorge Ruben53C44 (PRIMARY)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaLondon Mathematical Society2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60558Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-5600024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12014info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:47Zoai:ri.conicet.gov.ar:11336/60558instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:47.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Laplacian flow of homogeneous G 2 -structures and its solitons |
title |
Laplacian flow of homogeneous G 2 -structures and its solitons |
spellingShingle |
Laplacian flow of homogeneous G 2 -structures and its solitons Lauret, Jorge Ruben 53C44 (PRIMARY) |
title_short |
Laplacian flow of homogeneous G 2 -structures and its solitons |
title_full |
Laplacian flow of homogeneous G 2 -structures and its solitons |
title_fullStr |
Laplacian flow of homogeneous G 2 -structures and its solitons |
title_full_unstemmed |
Laplacian flow of homogeneous G 2 -structures and its solitons |
title_sort |
Laplacian flow of homogeneous G 2 -structures and its solitons |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben |
author_role |
author |
dc.subject.none.fl_str_mv |
53C44 (PRIMARY) |
topic |
53C44 (PRIMARY) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are geometrically characterized among Laplacian solitons as those with a 'diagonal' evolution. Unlike the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we have found, as an application of the above characterization, an example of a left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton. The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit examples of closed expanding Laplacian solitons. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60558 Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-560 0024-6115 1460-244X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60558 |
identifier_str_mv |
Lauret, Jorge Ruben; Laplacian flow of homogeneous G 2 -structures and its solitons; London Mathematical Society; Proceedings of the London Mathematical Society; 114; 3; 3-2017; 527-560 0024-6115 1460-244X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12014 info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
London Mathematical Society |
publisher.none.fl_str_mv |
London Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614388656373760 |
score |
13.070432 |