Abelian hypercomplex structures on central extensions of H-type Lie algebras
- Autores
- Barberis, Maria Laura Rita
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.
Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
17B30
32C10
53C15
53C56 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129973
Ver los metadatos del registro completo
id |
CONICETDig_89f3373be5f84a5a824536aef5d1d8bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129973 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Abelian hypercomplex structures on central extensions of H-type Lie algebrasBarberis, Maria Laura Rita17B3032C1053C1553C56https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2001-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129973Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-230022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000220info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00022-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:49Zoai:ri.conicet.gov.ar:11336/129973instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:49.22CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
title |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
spellingShingle |
Abelian hypercomplex structures on central extensions of H-type Lie algebras Barberis, Maria Laura Rita 17B30 32C10 53C15 53C56 |
title_short |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
title_full |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
title_fullStr |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
title_full_unstemmed |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
title_sort |
Abelian hypercomplex structures on central extensions of H-type Lie algebras |
dc.creator.none.fl_str_mv |
Barberis, Maria Laura Rita |
author |
Barberis, Maria Laura Rita |
author_facet |
Barberis, Maria Laura Rita |
author_role |
author |
dc.subject.none.fl_str_mv |
17B30 32C10 53C15 53C56 |
topic |
17B30 32C10 53C15 53C56 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404. Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129973 Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-23 0022-4049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129973 |
identifier_str_mv |
Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-23 0022-4049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000220 info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00022-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614269637754880 |
score |
13.070432 |