Abelian hypercomplex structures on central extensions of H-type Lie algebras

Autores
Barberis, Maria Laura Rita
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.
Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
17B30
32C10
53C15
53C56
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129973

id CONICETDig_89f3373be5f84a5a824536aef5d1d8bc
oai_identifier_str oai:ri.conicet.gov.ar:11336/129973
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Abelian hypercomplex structures on central extensions of H-type Lie algebrasBarberis, Maria Laura Rita17B3032C1053C1553C56https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2001-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129973Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-230022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000220info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00022-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:49Zoai:ri.conicet.gov.ar:11336/129973instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:49.22CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Abelian hypercomplex structures on central extensions of H-type Lie algebras
title Abelian hypercomplex structures on central extensions of H-type Lie algebras
spellingShingle Abelian hypercomplex structures on central extensions of H-type Lie algebras
Barberis, Maria Laura Rita
17B30
32C10
53C15
53C56
title_short Abelian hypercomplex structures on central extensions of H-type Lie algebras
title_full Abelian hypercomplex structures on central extensions of H-type Lie algebras
title_fullStr Abelian hypercomplex structures on central extensions of H-type Lie algebras
title_full_unstemmed Abelian hypercomplex structures on central extensions of H-type Lie algebras
title_sort Abelian hypercomplex structures on central extensions of H-type Lie algebras
dc.creator.none.fl_str_mv Barberis, Maria Laura Rita
author Barberis, Maria Laura Rita
author_facet Barberis, Maria Laura Rita
author_role author
dc.subject.none.fl_str_mv 17B30
32C10
53C15
53C56
topic 17B30
32C10
53C15
53C56
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.
Fil: Barberis, Maria Laura Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description It is the aim of this work to give a characterization of the two-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in Barberis and Dotti, J. Math. Oxford (2) 47 (1996) 389-404.
publishDate 2001
dc.date.none.fl_str_mv 2001-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129973
Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-23
0022-4049
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129973
identifier_str_mv Barberis, Maria Laura Rita; Abelian hypercomplex structures on central extensions of H-type Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 158; 1; 4-2001; 15-23
0022-4049
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000220
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00022-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614269637754880
score 13.070432