Interpolation of geometric structures compatible with a pseudo Riemannian metric
- Autores
- Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
22F30
22F50
53B30
53B35
53C15
53C56
53D05 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58454
Ver los metadatos del registro completo
id |
CONICETDig_041743aadf9b6d65d4f40ef5906dc990 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58454 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Interpolation of geometric structures compatible with a pseudo Riemannian metricFernández Culma, Edison AlbertoGodoy, Yamile AlejandraSalvai, Marcos Luis22F3022F5053B3053B3553C1553C5653D05https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58454Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-4680025-2611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-016-0846-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-016-0846-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:33Zoai:ri.conicet.gov.ar:11336/58454instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:34.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
title |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
spellingShingle |
Interpolation of geometric structures compatible with a pseudo Riemannian metric Fernández Culma, Edison Alberto 22F30 22F50 53B30 53B35 53C15 53C56 53D05 |
title_short |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
title_full |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
title_fullStr |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
title_full_unstemmed |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
title_sort |
Interpolation of geometric structures compatible with a pseudo Riemannian metric |
dc.creator.none.fl_str_mv |
Fernández Culma, Edison Alberto Godoy, Yamile Alejandra Salvai, Marcos Luis |
author |
Fernández Culma, Edison Alberto |
author_facet |
Fernández Culma, Edison Alberto Godoy, Yamile Alejandra Salvai, Marcos Luis |
author_role |
author |
author2 |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
22F30 22F50 53B30 53B35 53C15 53C56 53D05 |
topic |
22F30 22F50 53B30 53B35 53C15 53C56 53D05 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric. Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58454 Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-468 0025-2611 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58454 |
identifier_str_mv |
Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-468 0025-2611 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-016-0846-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-016-0846-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613341066035200 |
score |
13.070432 |