Interpolation of geometric structures compatible with a pseudo Riemannian metric

Autores
Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
22F30
22F50
53B30
53B35
53C15
53C56
53D05
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58454

id CONICETDig_041743aadf9b6d65d4f40ef5906dc990
oai_identifier_str oai:ri.conicet.gov.ar:11336/58454
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interpolation of geometric structures compatible with a pseudo Riemannian metricFernández Culma, Edison AlbertoGodoy, Yamile AlejandraSalvai, Marcos Luis22F3022F5053B3053B3553C1553C5653D05https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58454Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-4680025-2611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-016-0846-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-016-0846-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:33Zoai:ri.conicet.gov.ar:11336/58454instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:34.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interpolation of geometric structures compatible with a pseudo Riemannian metric
title Interpolation of geometric structures compatible with a pseudo Riemannian metric
spellingShingle Interpolation of geometric structures compatible with a pseudo Riemannian metric
Fernández Culma, Edison Alberto
22F30
22F50
53B30
53B35
53C15
53C56
53D05
title_short Interpolation of geometric structures compatible with a pseudo Riemannian metric
title_full Interpolation of geometric structures compatible with a pseudo Riemannian metric
title_fullStr Interpolation of geometric structures compatible with a pseudo Riemannian metric
title_full_unstemmed Interpolation of geometric structures compatible with a pseudo Riemannian metric
title_sort Interpolation of geometric structures compatible with a pseudo Riemannian metric
dc.creator.none.fl_str_mv Fernández Culma, Edison Alberto
Godoy, Yamile Alejandra
Salvai, Marcos Luis
author Fernández Culma, Edison Alberto
author_facet Fernández Culma, Edison Alberto
Godoy, Yamile Alejandra
Salvai, Marcos Luis
author_role author
author2 Godoy, Yamile Alejandra
Salvai, Marcos Luis
author2_role author
author
dc.subject.none.fl_str_mv 22F30
22F50
53B30
53B35
53C15
53C56
53D05
topic 22F30
22F50
53B30
53B35
53C15
53C56
53D05
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58454
Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-468
0025-2611
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58454
identifier_str_mv Fernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-468
0025-2611
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-016-0846-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-016-0846-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613341066035200
score 13.070432