On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group

Autores
del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Pseudo-Riemannian Spaces
Naturally Reductive
Lie Groups
Heisenberg Groups
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29852

id CONICETDig_484941c0ac478ec2f781f3ad8ccb28ad
oai_identifier_str oai:ri.conicet.gov.ar:11336/29852
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Groupdel Barco, Viviana JorgelinaOvando, Gabriela PaolaVittone, FranciscoPseudo-Riemannian SpacesNaturally ReductiveLie GroupsHeisenberg Groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitonsFil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29852del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-1531660-5446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00009-013-0312-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-013-0312-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:25Zoai:ri.conicet.gov.ar:11336/29852instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:25.413CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
title On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
spellingShingle On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
del Barco, Viviana Jorgelina
Pseudo-Riemannian Spaces
Naturally Reductive
Lie Groups
Heisenberg Groups
title_short On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
title_full On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
title_fullStr On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
title_full_unstemmed On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
title_sort On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
dc.creator.none.fl_str_mv del Barco, Viviana Jorgelina
Ovando, Gabriela Paola
Vittone, Francisco
author del Barco, Viviana Jorgelina
author_facet del Barco, Viviana Jorgelina
Ovando, Gabriela Paola
Vittone, Francisco
author_role author
author2 Ovando, Gabriela Paola
Vittone, Francisco
author2_role author
author
dc.subject.none.fl_str_mv Pseudo-Riemannian Spaces
Naturally Reductive
Lie Groups
Heisenberg Groups
topic Pseudo-Riemannian Spaces
Naturally Reductive
Lie Groups
Heisenberg Groups
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29852
del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-153
1660-5446
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29852
identifier_str_mv del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-153
1660-5446
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00009-013-0312-y
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-013-0312-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083532779159552
score 13.22299