On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
- Autores
- del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Pseudo-Riemannian Spaces
Naturally Reductive
Lie Groups
Heisenberg Groups - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29852
Ver los metadatos del registro completo
id |
CONICETDig_484941c0ac478ec2f781f3ad8ccb28ad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29852 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Groupdel Barco, Viviana JorgelinaOvando, Gabriela PaolaVittone, FranciscoPseudo-Riemannian SpacesNaturally ReductiveLie GroupsHeisenberg Groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitonsFil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29852del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-1531660-5446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00009-013-0312-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-013-0312-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:25Zoai:ri.conicet.gov.ar:11336/29852instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:25.413CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
title |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
spellingShingle |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group del Barco, Viviana Jorgelina Pseudo-Riemannian Spaces Naturally Reductive Lie Groups Heisenberg Groups |
title_short |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
title_full |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
title_fullStr |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
title_full_unstemmed |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
title_sort |
On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group |
dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina Ovando, Gabriela Paola Vittone, Francisco |
author |
del Barco, Viviana Jorgelina |
author_facet |
del Barco, Viviana Jorgelina Ovando, Gabriela Paola Vittone, Francisco |
author_role |
author |
author2 |
Ovando, Gabriela Paola Vittone, Francisco |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Pseudo-Riemannian Spaces Naturally Reductive Lie Groups Heisenberg Groups |
topic |
Pseudo-Riemannian Spaces Naturally Reductive Lie Groups Heisenberg Groups |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29852 del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-153 1660-5446 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29852 |
identifier_str_mv |
del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-153 1660-5446 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00009-013-0312-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-013-0312-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083532779159552 |
score |
13.22299 |