Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process
- Autores
- Castillo, Natalia Alejandra; Montes de Oca, Cecilia Estefania; Valdez, Alejandra Leonor; Fariña, Julia Ines
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Scleroglucan is an extracellular neutral b-1,3-b-1,6-glucan frequently produced by Sclerotium fungal species during submerged fermentation processes. Due to its physicochemical, rheological and biological properties, scleroglucan became particularly attractive for diverse food, agro industrial, biomedical and oil recovery applications. Currently, the most widely used technique for polymer quantification consists in its purification from culture broths and dry weightdetermination. This method has the inconvenience of being poorly sensitive at low concentrations and time-consuming, therefore, being not suitable for real-time monitoring. Recently, Jörg Nitschke et al. (Food Chemistry, 2011. 127: 791?796) developed a colorimetric Congo red-based method to quantify b-1,3-glucans in mycelia and fruiting bodies from edible mushrooms. Congo red would incorporate into the b-1,3-b-1,6-glucans triple helix thus leading to a bathochromic shift that can be used for colorimetric quantification. Based on this previous report, this work is aimed at adapting and optimizing this novel technique in order to on-line quantify scleroglucan production during submerged fermentation. For this purpose, several dye (0.6-1 g/L Congo red) and NaOH (80-200 μL of NaOH 1 or 1.2 N) concentrations were tested to achieve the greater bathochromic shift when using commercial scleroglucan (LSCL) as standard. Reproducibility of bathochromic shift was also evaluated with lab-scale produced scleroglucans. A scleroglucan calibration curve (0.1-0.9 g/L) could be satisfactorily constructed. Linearity, sensitivity and specificity within this working range were assessed at different wavelengths and time points (0, 30 min, 1, 3, 5, 8 and 24 h post reaction). Finally, to validate the methodology, a fermentation process with Sclerotium rolfsii ATCC 201126 was performed, and scleroglucan quantification was simultaneously accomplished by conventional (dry weight) and Congo red methods. Selected conditions allowed the reliable and sensitive scleroglucan Congo red quantification during fermentation. Both commercial and lab-scale produced scleroglucans could be successfully used for the standard curve preparation. This novel methodology proved to be highly effective and sensitive for the on-line quantification throughout scleroglucan production, and the obtained results were comparable to those from the conventional technique (dry weight). The method optimized for scleroglucan measurement showed to be inexpensive, practical, reliable, specific and time-effective, being also potentially useful for other triple-helical b-glucans. Additionally, on-line monitoring of scleroglucan production represents a critical tool for taking real-time appropriate decisions during fermentation process, particularly when working at large scale
Fil: Castillo, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Montes de Oca, Cecilia Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Valdez, Alejandra Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Fariña, Julia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
IX Congreso Argentino de Microbiología General
Santa Fe
Argentina
Sociedad Argentina de Microbiología General - Materia
-
scleroglucan
on line quantification
congo red
fermentation process - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195238
Ver los metadatos del registro completo
id |
CONICETDig_c34571ac7f19e32c84fa0d396b3c3c9f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195238 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation processCastillo, Natalia AlejandraMontes de Oca, Cecilia EstefaniaValdez, Alejandra LeonorFariña, Julia Inesscleroglucanon line quantificationcongo redfermentation processhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Scleroglucan is an extracellular neutral b-1,3-b-1,6-glucan frequently produced by Sclerotium fungal species during submerged fermentation processes. Due to its physicochemical, rheological and biological properties, scleroglucan became particularly attractive for diverse food, agro industrial, biomedical and oil recovery applications. Currently, the most widely used technique for polymer quantification consists in its purification from culture broths and dry weightdetermination. This method has the inconvenience of being poorly sensitive at low concentrations and time-consuming, therefore, being not suitable for real-time monitoring. Recently, Jörg Nitschke et al. (Food Chemistry, 2011. 127: 791?796) developed a colorimetric Congo red-based method to quantify b-1,3-glucans in mycelia and fruiting bodies from edible mushrooms. Congo red would incorporate into the b-1,3-b-1,6-glucans triple helix thus leading to a bathochromic shift that can be used for colorimetric quantification. Based on this previous report, this work is aimed at adapting and optimizing this novel technique in order to on-line quantify scleroglucan production during submerged fermentation. For this purpose, several dye (0.6-1 g/L Congo red) and NaOH (80-200 μL of NaOH 1 or 1.2 N) concentrations were tested to achieve the greater bathochromic shift when using commercial scleroglucan (LSCL) as standard. Reproducibility of bathochromic shift was also evaluated with lab-scale produced scleroglucans. A scleroglucan calibration curve (0.1-0.9 g/L) could be satisfactorily constructed. Linearity, sensitivity and specificity within this working range were assessed at different wavelengths and time points (0, 30 min, 1, 3, 5, 8 and 24 h post reaction). Finally, to validate the methodology, a fermentation process with Sclerotium rolfsii ATCC 201126 was performed, and scleroglucan quantification was simultaneously accomplished by conventional (dry weight) and Congo red methods. Selected conditions allowed the reliable and sensitive scleroglucan Congo red quantification during fermentation. Both commercial and lab-scale produced scleroglucans could be successfully used for the standard curve preparation. This novel methodology proved to be highly effective and sensitive for the on-line quantification throughout scleroglucan production, and the obtained results were comparable to those from the conventional technique (dry weight). The method optimized for scleroglucan measurement showed to be inexpensive, practical, reliable, specific and time-effective, being also potentially useful for other triple-helical b-glucans. Additionally, on-line monitoring of scleroglucan production represents a critical tool for taking real-time appropriate decisions during fermentation process, particularly when working at large scaleFil: Castillo, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Montes de Oca, Cecilia Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Valdez, Alejandra Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Fariña, Julia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaIX Congreso Argentino de Microbiología GeneralSanta FeArgentinaSociedad Argentina de Microbiología GeneralSociedad Argentina de Microbiología2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195238Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process; IX Congreso Argentino de Microbiología General; Santa Fe; Argentina; 2013; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-samige-2013.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:24Zoai:ri.conicet.gov.ar:11336/195238instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:24.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
title |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
spellingShingle |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process Castillo, Natalia Alejandra scleroglucan on line quantification congo red fermentation process |
title_short |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
title_full |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
title_fullStr |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
title_full_unstemmed |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
title_sort |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process |
dc.creator.none.fl_str_mv |
Castillo, Natalia Alejandra Montes de Oca, Cecilia Estefania Valdez, Alejandra Leonor Fariña, Julia Ines |
author |
Castillo, Natalia Alejandra |
author_facet |
Castillo, Natalia Alejandra Montes de Oca, Cecilia Estefania Valdez, Alejandra Leonor Fariña, Julia Ines |
author_role |
author |
author2 |
Montes de Oca, Cecilia Estefania Valdez, Alejandra Leonor Fariña, Julia Ines |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
scleroglucan on line quantification congo red fermentation process |
topic |
scleroglucan on line quantification congo red fermentation process |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Scleroglucan is an extracellular neutral b-1,3-b-1,6-glucan frequently produced by Sclerotium fungal species during submerged fermentation processes. Due to its physicochemical, rheological and biological properties, scleroglucan became particularly attractive for diverse food, agro industrial, biomedical and oil recovery applications. Currently, the most widely used technique for polymer quantification consists in its purification from culture broths and dry weightdetermination. This method has the inconvenience of being poorly sensitive at low concentrations and time-consuming, therefore, being not suitable for real-time monitoring. Recently, Jörg Nitschke et al. (Food Chemistry, 2011. 127: 791?796) developed a colorimetric Congo red-based method to quantify b-1,3-glucans in mycelia and fruiting bodies from edible mushrooms. Congo red would incorporate into the b-1,3-b-1,6-glucans triple helix thus leading to a bathochromic shift that can be used for colorimetric quantification. Based on this previous report, this work is aimed at adapting and optimizing this novel technique in order to on-line quantify scleroglucan production during submerged fermentation. For this purpose, several dye (0.6-1 g/L Congo red) and NaOH (80-200 μL of NaOH 1 or 1.2 N) concentrations were tested to achieve the greater bathochromic shift when using commercial scleroglucan (LSCL) as standard. Reproducibility of bathochromic shift was also evaluated with lab-scale produced scleroglucans. A scleroglucan calibration curve (0.1-0.9 g/L) could be satisfactorily constructed. Linearity, sensitivity and specificity within this working range were assessed at different wavelengths and time points (0, 30 min, 1, 3, 5, 8 and 24 h post reaction). Finally, to validate the methodology, a fermentation process with Sclerotium rolfsii ATCC 201126 was performed, and scleroglucan quantification was simultaneously accomplished by conventional (dry weight) and Congo red methods. Selected conditions allowed the reliable and sensitive scleroglucan Congo red quantification during fermentation. Both commercial and lab-scale produced scleroglucans could be successfully used for the standard curve preparation. This novel methodology proved to be highly effective and sensitive for the on-line quantification throughout scleroglucan production, and the obtained results were comparable to those from the conventional technique (dry weight). The method optimized for scleroglucan measurement showed to be inexpensive, practical, reliable, specific and time-effective, being also potentially useful for other triple-helical b-glucans. Additionally, on-line monitoring of scleroglucan production represents a critical tool for taking real-time appropriate decisions during fermentation process, particularly when working at large scale Fil: Castillo, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Montes de Oca, Cecilia Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Valdez, Alejandra Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Fariña, Julia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina IX Congreso Argentino de Microbiología General Santa Fe Argentina Sociedad Argentina de Microbiología General |
description |
Scleroglucan is an extracellular neutral b-1,3-b-1,6-glucan frequently produced by Sclerotium fungal species during submerged fermentation processes. Due to its physicochemical, rheological and biological properties, scleroglucan became particularly attractive for diverse food, agro industrial, biomedical and oil recovery applications. Currently, the most widely used technique for polymer quantification consists in its purification from culture broths and dry weightdetermination. This method has the inconvenience of being poorly sensitive at low concentrations and time-consuming, therefore, being not suitable for real-time monitoring. Recently, Jörg Nitschke et al. (Food Chemistry, 2011. 127: 791?796) developed a colorimetric Congo red-based method to quantify b-1,3-glucans in mycelia and fruiting bodies from edible mushrooms. Congo red would incorporate into the b-1,3-b-1,6-glucans triple helix thus leading to a bathochromic shift that can be used for colorimetric quantification. Based on this previous report, this work is aimed at adapting and optimizing this novel technique in order to on-line quantify scleroglucan production during submerged fermentation. For this purpose, several dye (0.6-1 g/L Congo red) and NaOH (80-200 μL of NaOH 1 or 1.2 N) concentrations were tested to achieve the greater bathochromic shift when using commercial scleroglucan (LSCL) as standard. Reproducibility of bathochromic shift was also evaluated with lab-scale produced scleroglucans. A scleroglucan calibration curve (0.1-0.9 g/L) could be satisfactorily constructed. Linearity, sensitivity and specificity within this working range were assessed at different wavelengths and time points (0, 30 min, 1, 3, 5, 8 and 24 h post reaction). Finally, to validate the methodology, a fermentation process with Sclerotium rolfsii ATCC 201126 was performed, and scleroglucan quantification was simultaneously accomplished by conventional (dry weight) and Congo red methods. Selected conditions allowed the reliable and sensitive scleroglucan Congo red quantification during fermentation. Both commercial and lab-scale produced scleroglucans could be successfully used for the standard curve preparation. This novel methodology proved to be highly effective and sensitive for the on-line quantification throughout scleroglucan production, and the obtained results were comparable to those from the conventional technique (dry weight). The method optimized for scleroglucan measurement showed to be inexpensive, practical, reliable, specific and time-effective, being also potentially useful for other triple-helical b-glucans. Additionally, on-line monitoring of scleroglucan production represents a critical tool for taking real-time appropriate decisions during fermentation process, particularly when working at large scale |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195238 Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process; IX Congreso Argentino de Microbiología General; Santa Fe; Argentina; 2013; 1-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195238 |
identifier_str_mv |
Adapted and optimized colorimetric method for the rapid on-line quantification of scleroglucan during a submerged fermentation process; IX Congreso Argentino de Microbiología General; Santa Fe; Argentina; 2013; 1-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-samige-2013.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología |
publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269285042356224 |
score |
13.13397 |