Anderson localization in Euclidean random matrices

Autores
Ciliberti, Stefano; Grigera, Tomás Sebastián; Martín Mayor, V.; Parisi, Giorgio; Verrocchio, P.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Física
spectra
localization properties
Euclidean random matrices
population dynamics algorithm (PDA)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126218

id SEDICI_0d8e2fc5ef01f416df6739e60af722e8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126218
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Anderson localization in Euclidean random matricesCiliberti, StefanoGrigera, Tomás SebastiánMartín Mayor, V.Parisi, GiorgioVerrocchio, P.Ciencias ExactasFísicaspectralocalization propertiesEuclidean random matricespopulation dynamics algorithm (PDA)We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2005-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126218enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0403122info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.71.153104info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:23Zoai:sedici.unlp.edu.ar:10915/126218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:24.068SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Anderson localization in Euclidean random matrices
title Anderson localization in Euclidean random matrices
spellingShingle Anderson localization in Euclidean random matrices
Ciliberti, Stefano
Ciencias Exactas
Física
spectra
localization properties
Euclidean random matrices
population dynamics algorithm (PDA)
title_short Anderson localization in Euclidean random matrices
title_full Anderson localization in Euclidean random matrices
title_fullStr Anderson localization in Euclidean random matrices
title_full_unstemmed Anderson localization in Euclidean random matrices
title_sort Anderson localization in Euclidean random matrices
dc.creator.none.fl_str_mv Ciliberti, Stefano
Grigera, Tomás Sebastián
Martín Mayor, V.
Parisi, Giorgio
Verrocchio, P.
author Ciliberti, Stefano
author_facet Ciliberti, Stefano
Grigera, Tomás Sebastián
Martín Mayor, V.
Parisi, Giorgio
Verrocchio, P.
author_role author
author2 Grigera, Tomás Sebastián
Martín Mayor, V.
Parisi, Giorgio
Verrocchio, P.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
spectra
localization properties
Euclidean random matrices
population dynamics algorithm (PDA)
topic Ciencias Exactas
Física
spectra
localization properties
Euclidean random matrices
population dynamics algorithm (PDA)
dc.description.none.fl_txt_mv We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.
publishDate 2005
dc.date.none.fl_str_mv 2005-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126218
url http://sedici.unlp.edu.ar/handle/10915/126218
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1098-0121
info:eu-repo/semantics/altIdentifier/issn/1550-235X
info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0403122
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.71.153104
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616183746134016
score 13.070432