Anderson localization in Euclidean random matrices
- Autores
- Ciliberti, Stefano; Grigera, Tomás Sebastián; Martín Mayor, V.; Parisi, Giorgio; Verrocchio, P.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
Física
spectra
localization properties
Euclidean random matrices
population dynamics algorithm (PDA) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126218
Ver los metadatos del registro completo
id |
SEDICI_0d8e2fc5ef01f416df6739e60af722e8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126218 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Anderson localization in Euclidean random matricesCiliberti, StefanoGrigera, Tomás SebastiánMartín Mayor, V.Parisi, GiorgioVerrocchio, P.Ciencias ExactasFísicaspectralocalization propertiesEuclidean random matricespopulation dynamics algorithm (PDA)We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2005-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126218enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0403122info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.71.153104info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:23Zoai:sedici.unlp.edu.ar:10915/126218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:24.068SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Anderson localization in Euclidean random matrices |
title |
Anderson localization in Euclidean random matrices |
spellingShingle |
Anderson localization in Euclidean random matrices Ciliberti, Stefano Ciencias Exactas Física spectra localization properties Euclidean random matrices population dynamics algorithm (PDA) |
title_short |
Anderson localization in Euclidean random matrices |
title_full |
Anderson localization in Euclidean random matrices |
title_fullStr |
Anderson localization in Euclidean random matrices |
title_full_unstemmed |
Anderson localization in Euclidean random matrices |
title_sort |
Anderson localization in Euclidean random matrices |
dc.creator.none.fl_str_mv |
Ciliberti, Stefano Grigera, Tomás Sebastián Martín Mayor, V. Parisi, Giorgio Verrocchio, P. |
author |
Ciliberti, Stefano |
author_facet |
Ciliberti, Stefano Grigera, Tomás Sebastián Martín Mayor, V. Parisi, Giorgio Verrocchio, P. |
author_role |
author |
author2 |
Grigera, Tomás Sebastián Martín Mayor, V. Parisi, Giorgio Verrocchio, P. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física spectra localization properties Euclidean random matrices population dynamics algorithm (PDA) |
topic |
Ciencias Exactas Física spectra localization properties Euclidean random matrices population dynamics algorithm (PDA) |
dc.description.none.fl_txt_mv |
We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126218 |
url |
http://sedici.unlp.edu.ar/handle/10915/126218 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1098-0121 info:eu-repo/semantics/altIdentifier/issn/1550-235X info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0403122 info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.71.153104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616183746134016 |
score |
13.070432 |