Two critical localization lengths in the Anderson transition on random graphs
- Autores
- Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; Lemarié, G.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Dubertrand, R.. Universitat Regensburg; Alemania
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. No especifíca;
Fil: Lemarié, G.. No especifíca; - Materia
-
QUANTUM
LOCALIZATION
RANDOM
GRAPH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/144410
Ver los metadatos del registro completo
id |
CONICETDig_4903a2efdcaac87f2ddca1a7dd739158 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/144410 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two critical localization lengths in the Anderson transition on random graphsGarcia-Mata, IgnacioMartin, J.Dubertrand, R.Giraud, O.Georgeot, B.Lemarié, G.QUANTUMLOCALIZATIONRANDOMGRAPHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Martin, J.. Université de Liège; BélgicaFil: Dubertrand, R.. Universitat Regensburg; AlemaniaFil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; FranciaFil: Georgeot, B.. No especifíca;Fil: Lemarié, G.. No especifíca;American Physical Society2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144410Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-72643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.012020info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.012020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:49Zoai:ri.conicet.gov.ar:11336/144410instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:49.276CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two critical localization lengths in the Anderson transition on random graphs |
title |
Two critical localization lengths in the Anderson transition on random graphs |
spellingShingle |
Two critical localization lengths in the Anderson transition on random graphs Garcia-Mata, Ignacio QUANTUM LOCALIZATION RANDOM GRAPH |
title_short |
Two critical localization lengths in the Anderson transition on random graphs |
title_full |
Two critical localization lengths in the Anderson transition on random graphs |
title_fullStr |
Two critical localization lengths in the Anderson transition on random graphs |
title_full_unstemmed |
Two critical localization lengths in the Anderson transition on random graphs |
title_sort |
Two critical localization lengths in the Anderson transition on random graphs |
dc.creator.none.fl_str_mv |
Garcia-Mata, Ignacio Martin, J. Dubertrand, R. Giraud, O. Georgeot, B. Lemarié, G. |
author |
Garcia-Mata, Ignacio |
author_facet |
Garcia-Mata, Ignacio Martin, J. Dubertrand, R. Giraud, O. Georgeot, B. Lemarié, G. |
author_role |
author |
author2 |
Martin, J. Dubertrand, R. Giraud, O. Georgeot, B. Lemarié, G. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
QUANTUM LOCALIZATION RANDOM GRAPH |
topic |
QUANTUM LOCALIZATION RANDOM GRAPH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context. Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Martin, J.. Université de Liège; Bélgica Fil: Dubertrand, R.. Universitat Regensburg; Alemania Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia Fil: Georgeot, B.. No especifíca; Fil: Lemarié, G.. No especifíca; |
description |
We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/144410 Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-7 2643-1564 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/144410 |
identifier_str_mv |
Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-7 2643-1564 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.012020 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.012020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614330043072512 |
score |
13.070432 |