Two critical localization lengths in the Anderson transition on random graphs

Autores
Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; Lemarié, G.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Dubertrand, R.. Universitat Regensburg; Alemania
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. No especifíca;
Fil: Lemarié, G.. No especifíca;
Materia
QUANTUM
LOCALIZATION
RANDOM
GRAPH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144410

id CONICETDig_4903a2efdcaac87f2ddca1a7dd739158
oai_identifier_str oai:ri.conicet.gov.ar:11336/144410
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two critical localization lengths in the Anderson transition on random graphsGarcia-Mata, IgnacioMartin, J.Dubertrand, R.Giraud, O.Georgeot, B.Lemarié, G.QUANTUMLOCALIZATIONRANDOMGRAPHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Martin, J.. Université de Liège; BélgicaFil: Dubertrand, R.. Universitat Regensburg; AlemaniaFil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; FranciaFil: Georgeot, B.. No especifíca;Fil: Lemarié, G.. No especifíca;American Physical Society2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144410Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-72643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.012020info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.012020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:49Zoai:ri.conicet.gov.ar:11336/144410instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:49.276CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two critical localization lengths in the Anderson transition on random graphs
title Two critical localization lengths in the Anderson transition on random graphs
spellingShingle Two critical localization lengths in the Anderson transition on random graphs
Garcia-Mata, Ignacio
QUANTUM
LOCALIZATION
RANDOM
GRAPH
title_short Two critical localization lengths in the Anderson transition on random graphs
title_full Two critical localization lengths in the Anderson transition on random graphs
title_fullStr Two critical localization lengths in the Anderson transition on random graphs
title_full_unstemmed Two critical localization lengths in the Anderson transition on random graphs
title_sort Two critical localization lengths in the Anderson transition on random graphs
dc.creator.none.fl_str_mv Garcia-Mata, Ignacio
Martin, J.
Dubertrand, R.
Giraud, O.
Georgeot, B.
Lemarié, G.
author Garcia-Mata, Ignacio
author_facet Garcia-Mata, Ignacio
Martin, J.
Dubertrand, R.
Giraud, O.
Georgeot, B.
Lemarié, G.
author_role author
author2 Martin, J.
Dubertrand, R.
Giraud, O.
Georgeot, B.
Lemarié, G.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv QUANTUM
LOCALIZATION
RANDOM
GRAPH
topic QUANTUM
LOCALIZATION
RANDOM
GRAPH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Dubertrand, R.. Universitat Regensburg; Alemania
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. No especifíca;
Fil: Lemarié, G.. No especifíca;
description We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥=1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥=1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144410
Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-7
2643-1564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144410
identifier_str_mv Garcia-Mata, Ignacio; Martin, J.; Dubertrand, R.; Giraud, O.; Georgeot, B.; et al.; Two critical localization lengths in the Anderson transition on random graphs; American Physical Society; Physical Review Research; 2; 1; 1-2020; 1-7
2643-1564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.012020
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.012020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614330043072512
score 13.070432