Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
- Autores
- Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; Lemarié, G.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. Centre National de la Recherche Scientifique; Francia
Fil: Dubertrand, R.. Northumbria University; Reino Unido
Fil: Lemarié, G.. Centre National de la Recherche Scientifique; Francia - Materia
-
LOCALIZATION
RANDOM
GRAPHS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210335
Ver los metadatos del registro completo
| id |
CONICETDig_27e91be79301ad03bc934b24ddc35f4b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210335 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localizationGarcia-Mata, IgnacioMartin, J.Giraud, O.Georgeot, B.Dubertrand, R.Lemarié, G.LOCALIZATIONRANDOMGRAPHShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Martin, J.. Université de Liège; BélgicaFil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; FranciaFil: Georgeot, B.. Centre National de la Recherche Scientifique; FranciaFil: Dubertrand, R.. Northumbria University; Reino UnidoFil: Lemarié, G.. Centre National de la Recherche Scientifique; FranciaAmerican Physical Society2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210335Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-332469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.106.214202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:00:09Zoai:ri.conicet.gov.ar:11336/210335instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:00:09.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| title |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| spellingShingle |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization Garcia-Mata, Ignacio LOCALIZATION RANDOM GRAPHS |
| title_short |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| title_full |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| title_fullStr |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| title_full_unstemmed |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| title_sort |
Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization |
| dc.creator.none.fl_str_mv |
Garcia-Mata, Ignacio Martin, J. Giraud, O. Georgeot, B. Dubertrand, R. Lemarié, G. |
| author |
Garcia-Mata, Ignacio |
| author_facet |
Garcia-Mata, Ignacio Martin, J. Giraud, O. Georgeot, B. Dubertrand, R. Lemarié, G. |
| author_role |
author |
| author2 |
Martin, J. Giraud, O. Georgeot, B. Dubertrand, R. Lemarié, G. |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
LOCALIZATION RANDOM GRAPHS |
| topic |
LOCALIZATION RANDOM GRAPHS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization. Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Martin, J.. Université de Liège; Bélgica Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia Fil: Georgeot, B.. Centre National de la Recherche Scientifique; Francia Fil: Dubertrand, R.. Northumbria University; Reino Unido Fil: Lemarié, G.. Centre National de la Recherche Scientifique; Francia |
| description |
The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210335 Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-33 2469-9950 2469-9969 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/210335 |
| identifier_str_mv |
Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-33 2469-9950 2469-9969 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.106.214202 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426746885865472 |
| score |
13.10058 |