Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization

Autores
Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; Lemarié, G.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. Centre National de la Recherche Scientifique; Francia
Fil: Dubertrand, R.. Northumbria University; Reino Unido
Fil: Lemarié, G.. Centre National de la Recherche Scientifique; Francia
Materia
LOCALIZATION
RANDOM
GRAPHS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210335

id CONICETDig_27e91be79301ad03bc934b24ddc35f4b
oai_identifier_str oai:ri.conicet.gov.ar:11336/210335
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localizationGarcia-Mata, IgnacioMartin, J.Giraud, O.Georgeot, B.Dubertrand, R.Lemarié, G.LOCALIZATIONRANDOMGRAPHShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Martin, J.. Université de Liège; BélgicaFil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; FranciaFil: Georgeot, B.. Centre National de la Recherche Scientifique; FranciaFil: Dubertrand, R.. Northumbria University; Reino UnidoFil: Lemarié, G.. Centre National de la Recherche Scientifique; FranciaAmerican Physical Society2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210335Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-332469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.106.214202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:00:09Zoai:ri.conicet.gov.ar:11336/210335instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:00:09.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
title Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
spellingShingle Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
Garcia-Mata, Ignacio
LOCALIZATION
RANDOM
GRAPHS
title_short Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
title_full Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
title_fullStr Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
title_full_unstemmed Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
title_sort Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization
dc.creator.none.fl_str_mv Garcia-Mata, Ignacio
Martin, J.
Giraud, O.
Georgeot, B.
Dubertrand, R.
Lemarié, G.
author Garcia-Mata, Ignacio
author_facet Garcia-Mata, Ignacio
Martin, J.
Giraud, O.
Georgeot, B.
Dubertrand, R.
Lemarié, G.
author_role author
author2 Martin, J.
Giraud, O.
Georgeot, B.
Dubertrand, R.
Lemarié, G.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv LOCALIZATION
RANDOM
GRAPHS
topic LOCALIZATION
RANDOM
GRAPHS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Fil: Garcia-Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Martin, J.. Université de Liège; Bélgica
Fil: Giraud, O.. Laboratoire Physique Theorique Et Modeles Statistique; Francia
Fil: Georgeot, B.. Centre National de la Recherche Scientifique; Francia
Fil: Dubertrand, R.. Northumbria University; Reino Unido
Fil: Lemarié, G.. Centre National de la Recherche Scientifique; Francia
description The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210335
Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-33
2469-9950
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210335
identifier_str_mv Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-33
2469-9950
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.106.214202
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426746885865472
score 13.10058