Perfectness of clustered graphs

Autores
Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.
Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; Argentina
Fil: Cornaz, Deni. Université Paris-Dauphine; Francia
Fil: Ekim, Tinaz. Boğaziçi University; Turquía
Fil: Ries, Bernard. Université Paris-Dauphine; Francia
Fuente
CiteSeerX
Materia
CONFORMAL MATRIX
PARTITION COLORING
PERFECT MATRIX
SELECTIVE COLORING
THRESHOLD GRAPH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/737

id CONICETDig_c0ef52f470372040f755474fb41733e8
oai_identifier_str oai:ri.conicet.gov.ar:11336/737
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perfectness of clustered graphsBonomo, FlaviaCornaz, DeniEkim, TinazRies, BernardCONFORMAL MATRIXPARTITION COLORINGPERFECT MATRIXSELECTIVE COLORINGTHRESHOLD GRAPHhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; ArgentinaFil: Cornaz, Deni. Université Paris-Dauphine; FranciaFil: Ekim, Tinaz. Boğaziçi University; TurquíaFil: Ries, Bernard. Université Paris-Dauphine; FranciaElsevier Science2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/737Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-3031572-5286CiteSeerXreponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicasenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528613000443info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2013.07.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/2025-09-29T10:17:13Zoai:ri.conicet.gov.ar:11336/737instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:14.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perfectness of clustered graphs
title Perfectness of clustered graphs
spellingShingle Perfectness of clustered graphs
Bonomo, Flavia
CONFORMAL MATRIX
PARTITION COLORING
PERFECT MATRIX
SELECTIVE COLORING
THRESHOLD GRAPH
title_short Perfectness of clustered graphs
title_full Perfectness of clustered graphs
title_fullStr Perfectness of clustered graphs
title_full_unstemmed Perfectness of clustered graphs
title_sort Perfectness of clustered graphs
dc.creator.none.fl_str_mv Bonomo, Flavia
Cornaz, Deni
Ekim, Tinaz
Ries, Bernard
author Bonomo, Flavia
author_facet Bonomo, Flavia
Cornaz, Deni
Ekim, Tinaz
Ries, Bernard
author_role author
author2 Cornaz, Deni
Ekim, Tinaz
Ries, Bernard
author2_role author
author
author
dc.subject.none.fl_str_mv CONFORMAL MATRIX
PARTITION COLORING
PERFECT MATRIX
SELECTIVE COLORING
THRESHOLD GRAPH
topic CONFORMAL MATRIX
PARTITION COLORING
PERFECT MATRIX
SELECTIVE COLORING
THRESHOLD GRAPH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.
Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; Argentina
Fil: Cornaz, Deni. Université Paris-Dauphine; Francia
Fil: Ekim, Tinaz. Boğaziçi University; Turquía
Fil: Ries, Bernard. Université Paris-Dauphine; Francia
description Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/737
Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-303
1572-5286
url http://hdl.handle.net/11336/737
identifier_str_mv Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-303
1572-5286
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528613000443
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2013.07.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv CiteSeerX
reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614123736793088
score 13.069144