Perfectness of clustered graphs
- Autores
- Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.
Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; Argentina
Fil: Cornaz, Deni. Université Paris-Dauphine; Francia
Fil: Ekim, Tinaz. Boğaziçi University; Turquía
Fil: Ries, Bernard. Université Paris-Dauphine; Francia - Fuente
- CiteSeerX
- Materia
-
CONFORMAL MATRIX
PARTITION COLORING
PERFECT MATRIX
SELECTIVE COLORING
THRESHOLD GRAPH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/737
Ver los metadatos del registro completo
id |
CONICETDig_c0ef52f470372040f755474fb41733e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/737 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perfectness of clustered graphsBonomo, FlaviaCornaz, DeniEkim, TinazRies, BernardCONFORMAL MATRIXPARTITION COLORINGPERFECT MATRIXSELECTIVE COLORINGTHRESHOLD GRAPHhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; ArgentinaFil: Cornaz, Deni. Université Paris-Dauphine; FranciaFil: Ekim, Tinaz. Boğaziçi University; TurquíaFil: Ries, Bernard. Université Paris-Dauphine; FranciaElsevier Science2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/737Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-3031572-5286CiteSeerXreponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicasenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528613000443info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2013.07.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/2025-09-29T10:17:13Zoai:ri.conicet.gov.ar:11336/737instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:14.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perfectness of clustered graphs |
title |
Perfectness of clustered graphs |
spellingShingle |
Perfectness of clustered graphs Bonomo, Flavia CONFORMAL MATRIX PARTITION COLORING PERFECT MATRIX SELECTIVE COLORING THRESHOLD GRAPH |
title_short |
Perfectness of clustered graphs |
title_full |
Perfectness of clustered graphs |
title_fullStr |
Perfectness of clustered graphs |
title_full_unstemmed |
Perfectness of clustered graphs |
title_sort |
Perfectness of clustered graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Cornaz, Deni Ekim, Tinaz Ries, Bernard |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Cornaz, Deni Ekim, Tinaz Ries, Bernard |
author_role |
author |
author2 |
Cornaz, Deni Ekim, Tinaz Ries, Bernard |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CONFORMAL MATRIX PARTITION COLORING PERFECT MATRIX SELECTIVE COLORING THRESHOLD GRAPH |
topic |
CONFORMAL MATRIX PARTITION COLORING PERFECT MATRIX SELECTIVE COLORING THRESHOLD GRAPH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one. Fil: Bonomo, Flavia. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas; Argentina Fil: Cornaz, Deni. Université Paris-Dauphine; Francia Fil: Ekim, Tinaz. Boğaziçi University; Turquía Fil: Ries, Bernard. Université Paris-Dauphine; Francia |
description |
Given a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/737 Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-303 1572-5286 |
url |
http://hdl.handle.net/11336/737 |
identifier_str_mv |
Bonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-303 1572-5286 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528613000443 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2013.07.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
CiteSeerX reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614123736793088 |
score |
13.069144 |