Clique-perfectness of complements of line graphs
- Autores
- Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret Katrin
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques equals the minimum number of vertices intersecting all maximal cliques for each induced subgraph. In this work, we give necessary and sufficient conditions for the complement of a line graph to be clique-perfect and an O(n 2 )-time algorithm to recognize such graphs. These results follow from a characterization and a linear-time recognition algorithm for matching-perfect graphs, which we introduce as graphs where the maximum number of pairwise edge-disjoint maximal matchings equals the minimum number of edges intersecting all maximal matchings for each subgraph. Thereby, we completely describe the linear and circular structure of the graphs containing no bipartite claw, from which we derive a structure theorem for all those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wagler, Annegret Katrin. Universite Blaise Pascal; Francia - Materia
-
Clique-Perfect Graphs
Edge-Coloring
Line Graphs
Matching - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18898
Ver los metadatos del registro completo
id |
CONICETDig_64d26edb58512b440ccd3162a8dc66e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18898 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Clique-perfectness of complements of line graphsBonomo, FlaviaDuran, Guillermo AlfredoSafe, Martin DarioWagler, Annegret KatrinClique-Perfect GraphsEdge-ColoringLine GraphsMatchinghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques equals the minimum number of vertices intersecting all maximal cliques for each induced subgraph. In this work, we give necessary and sufficient conditions for the complement of a line graph to be clique-perfect and an O(n 2 )-time algorithm to recognize such graphs. These results follow from a characterization and a linear-time recognition algorithm for matching-perfect graphs, which we introduce as graphs where the maximum number of pairwise edge-disjoint maximal matchings equals the minimum number of edges intersecting all maximal matchings for each subgraph. Thereby, we completely describe the linear and circular structure of the graphs containing no bipartite claw, from which we derive a structure theorem for all those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wagler, Annegret Katrin. Universite Blaise Pascal; FranciaElsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18898Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret Katrin; Clique-perfectness of complements of line graphs; Elsevier Science; Discrete Applied Mathematics; 186; 5-2015; 19-440166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.01.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X1500013Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:48Zoai:ri.conicet.gov.ar:11336/18898instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:48.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Clique-perfectness of complements of line graphs |
title |
Clique-perfectness of complements of line graphs |
spellingShingle |
Clique-perfectness of complements of line graphs Bonomo, Flavia Clique-Perfect Graphs Edge-Coloring Line Graphs Matching |
title_short |
Clique-perfectness of complements of line graphs |
title_full |
Clique-perfectness of complements of line graphs |
title_fullStr |
Clique-perfectness of complements of line graphs |
title_full_unstemmed |
Clique-perfectness of complements of line graphs |
title_sort |
Clique-perfectness of complements of line graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret Katrin |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret Katrin |
author_role |
author |
author2 |
Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret Katrin |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Clique-Perfect Graphs Edge-Coloring Line Graphs Matching |
topic |
Clique-Perfect Graphs Edge-Coloring Line Graphs Matching |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques equals the minimum number of vertices intersecting all maximal cliques for each induced subgraph. In this work, we give necessary and sufficient conditions for the complement of a line graph to be clique-perfect and an O(n 2 )-time algorithm to recognize such graphs. These results follow from a characterization and a linear-time recognition algorithm for matching-perfect graphs, which we introduce as graphs where the maximum number of pairwise edge-disjoint maximal matchings equals the minimum number of edges intersecting all maximal matchings for each subgraph. Thereby, we completely describe the linear and circular structure of the graphs containing no bipartite claw, from which we derive a structure theorem for all those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wagler, Annegret Katrin. Universite Blaise Pascal; Francia |
description |
A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques equals the minimum number of vertices intersecting all maximal cliques for each induced subgraph. In this work, we give necessary and sufficient conditions for the complement of a line graph to be clique-perfect and an O(n 2 )-time algorithm to recognize such graphs. These results follow from a characterization and a linear-time recognition algorithm for matching-perfect graphs, which we introduce as graphs where the maximum number of pairwise edge-disjoint maximal matchings equals the minimum number of edges intersecting all maximal matchings for each subgraph. Thereby, we completely describe the linear and circular structure of the graphs containing no bipartite claw, from which we derive a structure theorem for all those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18898 Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret Katrin; Clique-perfectness of complements of line graphs; Elsevier Science; Discrete Applied Mathematics; 186; 5-2015; 19-44 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18898 |
identifier_str_mv |
Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret Katrin; Clique-perfectness of complements of line graphs; Elsevier Science; Discrete Applied Mathematics; 186; 5-2015; 19-44 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.01.012 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X1500013X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083385204670464 |
score |
13.22299 |