Minimum sum set coloring of trees and line graphs of trees

Autores
Bonomo, F.; Durn, G.; Marenco, J.; Valencia-Pabon, M.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2011;159(5):288-294
Materia
Graph coloring
Line graphs of trees
Minimum sum coloring
Set-coloring
Trees
Graph colorings
Line graph
Minimum sum coloring
Set-coloring
Trees
Coloring
Graph theory
Graphic methods
Trees (mathematics)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v159_n5_p288_Bonomo

id BDUBAFCEN_d301a5b57cdd56ff0fb2d9401818c763
oai_identifier_str paperaa:paper_0166218X_v159_n5_p288_Bonomo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Minimum sum set coloring of trees and line graphs of treesBonomo, F.Durn, G.Marenco, J.Valencia-Pabon, M.Graph coloringLine graphs of treesMinimum sum coloringSet-coloringTreesGraph coloringsLine graphMinimum sum coloringSet-coloringTreesColoringGraph theoryGraphic methodsTrees (mathematics)In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_BonomoDiscrete Appl Math 2011;159(5):288-294reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0166218X_v159_n5_p288_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.831Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Minimum sum set coloring of trees and line graphs of trees
title Minimum sum set coloring of trees and line graphs of trees
spellingShingle Minimum sum set coloring of trees and line graphs of trees
Bonomo, F.
Graph coloring
Line graphs of trees
Minimum sum coloring
Set-coloring
Trees
Graph colorings
Line graph
Minimum sum coloring
Set-coloring
Trees
Coloring
Graph theory
Graphic methods
Trees (mathematics)
title_short Minimum sum set coloring of trees and line graphs of trees
title_full Minimum sum set coloring of trees and line graphs of trees
title_fullStr Minimum sum set coloring of trees and line graphs of trees
title_full_unstemmed Minimum sum set coloring of trees and line graphs of trees
title_sort Minimum sum set coloring of trees and line graphs of trees
dc.creator.none.fl_str_mv Bonomo, F.
Durn, G.
Marenco, J.
Valencia-Pabon, M.
author Bonomo, F.
author_facet Bonomo, F.
Durn, G.
Marenco, J.
Valencia-Pabon, M.
author_role author
author2 Durn, G.
Marenco, J.
Valencia-Pabon, M.
author2_role author
author
author
dc.subject.none.fl_str_mv Graph coloring
Line graphs of trees
Minimum sum coloring
Set-coloring
Trees
Graph colorings
Line graph
Minimum sum coloring
Set-coloring
Trees
Coloring
Graph theory
Graphic methods
Trees (mathematics)
topic Graph coloring
Line graphs of trees
Minimum sum coloring
Set-coloring
Trees
Graph colorings
Line graph
Minimum sum coloring
Set-coloring
Trees
Coloring
Graph theory
Graphic methods
Trees (mathematics)
dc.description.none.fl_txt_mv In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_Bonomo
url http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_Bonomo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2011;159(5):288-294
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740845510656
score 13.070432