Minimum sum set coloring of trees and line graphs of trees
- Autores
- Bonomo, F.; Durn, G.; Marenco, J.; Valencia-Pabon, M.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2011;159(5):288-294
- Materia
-
Graph coloring
Line graphs of trees
Minimum sum coloring
Set-coloring
Trees
Graph colorings
Line graph
Minimum sum coloring
Set-coloring
Trees
Coloring
Graph theory
Graphic methods
Trees (mathematics) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v159_n5_p288_Bonomo
Ver los metadatos del registro completo
id |
BDUBAFCEN_d301a5b57cdd56ff0fb2d9401818c763 |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v159_n5_p288_Bonomo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Minimum sum set coloring of trees and line graphs of treesBonomo, F.Durn, G.Marenco, J.Valencia-Pabon, M.Graph coloringLine graphs of treesMinimum sum coloringSet-coloringTreesGraph coloringsLine graphMinimum sum coloringSet-coloringTreesColoringGraph theoryGraphic methodsTrees (mathematics)In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_BonomoDiscrete Appl Math 2011;159(5):288-294reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0166218X_v159_n5_p288_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.831Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Minimum sum set coloring of trees and line graphs of trees |
title |
Minimum sum set coloring of trees and line graphs of trees |
spellingShingle |
Minimum sum set coloring of trees and line graphs of trees Bonomo, F. Graph coloring Line graphs of trees Minimum sum coloring Set-coloring Trees Graph colorings Line graph Minimum sum coloring Set-coloring Trees Coloring Graph theory Graphic methods Trees (mathematics) |
title_short |
Minimum sum set coloring of trees and line graphs of trees |
title_full |
Minimum sum set coloring of trees and line graphs of trees |
title_fullStr |
Minimum sum set coloring of trees and line graphs of trees |
title_full_unstemmed |
Minimum sum set coloring of trees and line graphs of trees |
title_sort |
Minimum sum set coloring of trees and line graphs of trees |
dc.creator.none.fl_str_mv |
Bonomo, F. Durn, G. Marenco, J. Valencia-Pabon, M. |
author |
Bonomo, F. |
author_facet |
Bonomo, F. Durn, G. Marenco, J. Valencia-Pabon, M. |
author_role |
author |
author2 |
Durn, G. Marenco, J. Valencia-Pabon, M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Graph coloring Line graphs of trees Minimum sum coloring Set-coloring Trees Graph colorings Line graph Minimum sum coloring Set-coloring Trees Coloring Graph theory Graphic methods Trees (mathematics) |
topic |
Graph coloring Line graphs of trees Minimum sum coloring Set-coloring Trees Graph colorings Line graph Minimum sum coloring Set-coloring Trees Coloring Graph theory Graphic methods Trees (mathematics) |
dc.description.none.fl_txt_mv |
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees. © 2010 Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_Bonomo |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n5_p288_Bonomo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2011;159(5):288-294 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740845510656 |
score |
13.070432 |