Robust accelerated failure time regression
- Autores
- Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
Accelerated Failure Time Models
Censoring
Robust Regression - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68308
Ver los metadatos del registro completo
id |
CONICETDig_c0c2420e578a02b4ad039a01ae7fd391 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68308 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust accelerated failure time regressionLocatelli, IsabellaMarazzi, Alfio NataleYohai, Victor JaimeAccelerated Failure Time ModelsCensoringRobust Regressionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; SuizaFil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; SuizaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68308Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-8870167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.07.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:39Zoai:ri.conicet.gov.ar:11336/68308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:39.895CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust accelerated failure time regression |
title |
Robust accelerated failure time regression |
spellingShingle |
Robust accelerated failure time regression Locatelli, Isabella Accelerated Failure Time Models Censoring Robust Regression |
title_short |
Robust accelerated failure time regression |
title_full |
Robust accelerated failure time regression |
title_fullStr |
Robust accelerated failure time regression |
title_full_unstemmed |
Robust accelerated failure time regression |
title_sort |
Robust accelerated failure time regression |
dc.creator.none.fl_str_mv |
Locatelli, Isabella Marazzi, Alfio Natale Yohai, Victor Jaime |
author |
Locatelli, Isabella |
author_facet |
Locatelli, Isabella Marazzi, Alfio Natale Yohai, Victor Jaime |
author_role |
author |
author2 |
Marazzi, Alfio Natale Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Accelerated Failure Time Models Censoring Robust Regression |
topic |
Accelerated Failure Time Models Censoring Robust Regression |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed. Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68308 Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68308 |
identifier_str_mv |
Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.07.017 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268933581701120 |
score |
13.13397 |