Robust accelerated failure time regression

Autores
Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Materia
Accelerated Failure Time Models
Censoring
Robust Regression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68308

id CONICETDig_c0c2420e578a02b4ad039a01ae7fd391
oai_identifier_str oai:ri.conicet.gov.ar:11336/68308
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust accelerated failure time regressionLocatelli, IsabellaMarazzi, Alfio NataleYohai, Victor JaimeAccelerated Failure Time ModelsCensoringRobust Regressionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; SuizaFil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; SuizaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68308Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-8870167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.07.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:39Zoai:ri.conicet.gov.ar:11336/68308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:39.895CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust accelerated failure time regression
title Robust accelerated failure time regression
spellingShingle Robust accelerated failure time regression
Locatelli, Isabella
Accelerated Failure Time Models
Censoring
Robust Regression
title_short Robust accelerated failure time regression
title_full Robust accelerated failure time regression
title_fullStr Robust accelerated failure time regression
title_full_unstemmed Robust accelerated failure time regression
title_sort Robust accelerated failure time regression
dc.creator.none.fl_str_mv Locatelli, Isabella
Marazzi, Alfio Natale
Yohai, Victor Jaime
author Locatelli, Isabella
author_facet Locatelli, Isabella
Marazzi, Alfio Natale
Yohai, Victor Jaime
author_role author
author2 Marazzi, Alfio Natale
Yohai, Victor Jaime
author2_role author
author
dc.subject.none.fl_str_mv Accelerated Failure Time Models
Censoring
Robust Regression
topic Accelerated Failure Time Models
Censoring
Robust Regression
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
description Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68308
Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887
0167-9473
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68308
identifier_str_mv Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887
0167-9473
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.07.017
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268933581701120
score 13.13397