Robust tests for linear regression models based on τ-estimates
- Autores
- Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá
Fil: Van Aelst, Stefan. Katholikie Universiteit Leuven; Bélgica
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Linear Regression
Robust Statistics
Robust Tests - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68009
Ver los metadatos del registro completo
id |
CONICETDig_9105b01b1c07d8a298ffe82c00ec7a85 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68009 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust tests for linear regression models based on τ-estimatesSalibian Barrera, Matías OctavioVan Aelst, StefanYohai, Victor JaimeLinear RegressionRobust StatisticsRobust Testshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.Fil: Salibian Barrera, Matías Octavio. University of British Columbia; CanadáFil: Van Aelst, Stefan. Katholikie Universiteit Leuven; BélgicaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68009Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-4550167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.09.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314002734info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:25Zoai:ri.conicet.gov.ar:11336/68009instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:26.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust tests for linear regression models based on τ-estimates |
title |
Robust tests for linear regression models based on τ-estimates |
spellingShingle |
Robust tests for linear regression models based on τ-estimates Salibian Barrera, Matías Octavio Linear Regression Robust Statistics Robust Tests |
title_short |
Robust tests for linear regression models based on τ-estimates |
title_full |
Robust tests for linear regression models based on τ-estimates |
title_fullStr |
Robust tests for linear regression models based on τ-estimates |
title_full_unstemmed |
Robust tests for linear regression models based on τ-estimates |
title_sort |
Robust tests for linear regression models based on τ-estimates |
dc.creator.none.fl_str_mv |
Salibian Barrera, Matías Octavio Van Aelst, Stefan Yohai, Victor Jaime |
author |
Salibian Barrera, Matías Octavio |
author_facet |
Salibian Barrera, Matías Octavio Van Aelst, Stefan Yohai, Victor Jaime |
author_role |
author |
author2 |
Van Aelst, Stefan Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Linear Regression Robust Statistics Robust Tests |
topic |
Linear Regression Robust Statistics Robust Tests |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied. Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá Fil: Van Aelst, Stefan. Katholikie Universiteit Leuven; Bélgica Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68009 Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68009 |
identifier_str_mv |
Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.09.012 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314002734 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613308486778880 |
score |
13.070432 |