Robust tests for linear regression models based on τ-estimates

Autores
Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá
Fil: Van Aelst, Stefan. Katholikie Universiteit Leuven; Bélgica
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Linear Regression
Robust Statistics
Robust Tests
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68009

id CONICETDig_9105b01b1c07d8a298ffe82c00ec7a85
oai_identifier_str oai:ri.conicet.gov.ar:11336/68009
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust tests for linear regression models based on τ-estimatesSalibian Barrera, Matías OctavioVan Aelst, StefanYohai, Victor JaimeLinear RegressionRobust StatisticsRobust Testshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.Fil: Salibian Barrera, Matías Octavio. University of British Columbia; CanadáFil: Van Aelst, Stefan. Katholikie Universiteit Leuven; BélgicaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68009Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-4550167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.09.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314002734info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:25Zoai:ri.conicet.gov.ar:11336/68009instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:26.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust tests for linear regression models based on τ-estimates
title Robust tests for linear regression models based on τ-estimates
spellingShingle Robust tests for linear regression models based on τ-estimates
Salibian Barrera, Matías Octavio
Linear Regression
Robust Statistics
Robust Tests
title_short Robust tests for linear regression models based on τ-estimates
title_full Robust tests for linear regression models based on τ-estimates
title_fullStr Robust tests for linear regression models based on τ-estimates
title_full_unstemmed Robust tests for linear regression models based on τ-estimates
title_sort Robust tests for linear regression models based on τ-estimates
dc.creator.none.fl_str_mv Salibian Barrera, Matías Octavio
Van Aelst, Stefan
Yohai, Victor Jaime
author Salibian Barrera, Matías Octavio
author_facet Salibian Barrera, Matías Octavio
Van Aelst, Stefan
Yohai, Victor Jaime
author_role author
author2 Van Aelst, Stefan
Yohai, Victor Jaime
author2_role author
author
dc.subject.none.fl_str_mv Linear Regression
Robust Statistics
Robust Tests
topic Linear Regression
Robust Statistics
Robust Tests
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá
Fil: Van Aelst, Stefan. Katholikie Universiteit Leuven; Bélgica
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68009
Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455
0167-9473
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68009
identifier_str_mv Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455
0167-9473
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.09.012
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314002734
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613308486778880
score 13.070432