Penalized robust estimators in sparse logistic regression

Autores
Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Chebi, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
LOGISTIC REGRESSION
OUTLIERS
PENALTY FUNCTIONS
ROBUST ESTIMATION
SPARSE MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204063

id CONICETDig_1ce584babda532ab8c93e5e1fa730d26
oai_identifier_str oai:ri.conicet.gov.ar:11336/204063
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Penalized robust estimators in sparse logistic regressionBianco, Ana MariaBoente Boente, Graciela LinaChebi, GonzaloLOGISTIC REGRESSIONOUTLIERSPENALTY FUNCTIONSROBUST ESTIMATIONSPARSE MODELShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Chebi, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204063Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo; Penalized robust estimators in sparse logistic regression; Springer; Test; 31; 3; 9-2022; 563-5941133-0686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-021-00792-winfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-021-00792-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:13Zoai:ri.conicet.gov.ar:11336/204063instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:14.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Penalized robust estimators in sparse logistic regression
title Penalized robust estimators in sparse logistic regression
spellingShingle Penalized robust estimators in sparse logistic regression
Bianco, Ana Maria
LOGISTIC REGRESSION
OUTLIERS
PENALTY FUNCTIONS
ROBUST ESTIMATION
SPARSE MODELS
title_short Penalized robust estimators in sparse logistic regression
title_full Penalized robust estimators in sparse logistic regression
title_fullStr Penalized robust estimators in sparse logistic regression
title_full_unstemmed Penalized robust estimators in sparse logistic regression
title_sort Penalized robust estimators in sparse logistic regression
dc.creator.none.fl_str_mv Bianco, Ana Maria
Boente Boente, Graciela Lina
Chebi, Gonzalo
author Bianco, Ana Maria
author_facet Bianco, Ana Maria
Boente Boente, Graciela Lina
Chebi, Gonzalo
author_role author
author2 Boente Boente, Graciela Lina
Chebi, Gonzalo
author2_role author
author
dc.subject.none.fl_str_mv LOGISTIC REGRESSION
OUTLIERS
PENALTY FUNCTIONS
ROBUST ESTIMATION
SPARSE MODELS
topic LOGISTIC REGRESSION
OUTLIERS
PENALTY FUNCTIONS
ROBUST ESTIMATION
SPARSE MODELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Chebi, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204063
Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo; Penalized robust estimators in sparse logistic regression; Springer; Test; 31; 3; 9-2022; 563-594
1133-0686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204063
identifier_str_mv Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo; Penalized robust estimators in sparse logistic regression; Springer; Test; 31; 3; 9-2022; 563-594
1133-0686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-021-00792-w
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-021-00792-w
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269210232750080
score 13.13397