Robust testing for superiority between two regression curves

Autores
Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pardo Fernández, Juan Carlos. Universidad de Vigo; España
Materia
Hypothesis Testing
Nonparametric Regression Models
Robust Inference
Smoothing Techniques
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18946

id CONICETDig_edc3d831e2e212ab4a0c7486fd9e0061
oai_identifier_str oai:ri.conicet.gov.ar:11336/18946
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust testing for superiority between two regression curvesBoente Boente, Graciela LinaPardo Fernández, Juan CarlosHypothesis TestingNonparametric Regression ModelsRobust InferenceSmoothing Techniqueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pardo Fernández, Juan Carlos. Universidad de Vigo; EspañaElsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18946Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-1680167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2015.12.002info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947315003023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:33Zoai:ri.conicet.gov.ar:11336/18946instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:33.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust testing for superiority between two regression curves
title Robust testing for superiority between two regression curves
spellingShingle Robust testing for superiority between two regression curves
Boente Boente, Graciela Lina
Hypothesis Testing
Nonparametric Regression Models
Robust Inference
Smoothing Techniques
title_short Robust testing for superiority between two regression curves
title_full Robust testing for superiority between two regression curves
title_fullStr Robust testing for superiority between two regression curves
title_full_unstemmed Robust testing for superiority between two regression curves
title_sort Robust testing for superiority between two regression curves
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Pardo Fernández, Juan Carlos
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Pardo Fernández, Juan Carlos
author_role author
author2 Pardo Fernández, Juan Carlos
author2_role author
dc.subject.none.fl_str_mv Hypothesis Testing
Nonparametric Regression Models
Robust Inference
Smoothing Techniques
topic Hypothesis Testing
Nonparametric Regression Models
Robust Inference
Smoothing Techniques
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pardo Fernández, Juan Carlos. Universidad de Vigo; España
description The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18946
Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-168
0167-9473
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18946
identifier_str_mv Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-168
0167-9473
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2015.12.002
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947315003023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613283268526080
score 13.069144