Robust testing for superiority between two regression curves
- Autores
- Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pardo Fernández, Juan Carlos. Universidad de Vigo; España - Materia
-
Hypothesis Testing
Nonparametric Regression Models
Robust Inference
Smoothing Techniques - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18946
Ver los metadatos del registro completo
id |
CONICETDig_edc3d831e2e212ab4a0c7486fd9e0061 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18946 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust testing for superiority between two regression curvesBoente Boente, Graciela LinaPardo Fernández, Juan CarlosHypothesis TestingNonparametric Regression ModelsRobust InferenceSmoothing Techniqueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pardo Fernández, Juan Carlos. Universidad de Vigo; EspañaElsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18946Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-1680167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2015.12.002info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947315003023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:33Zoai:ri.conicet.gov.ar:11336/18946instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:33.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust testing for superiority between two regression curves |
title |
Robust testing for superiority between two regression curves |
spellingShingle |
Robust testing for superiority between two regression curves Boente Boente, Graciela Lina Hypothesis Testing Nonparametric Regression Models Robust Inference Smoothing Techniques |
title_short |
Robust testing for superiority between two regression curves |
title_full |
Robust testing for superiority between two regression curves |
title_fullStr |
Robust testing for superiority between two regression curves |
title_full_unstemmed |
Robust testing for superiority between two regression curves |
title_sort |
Robust testing for superiority between two regression curves |
dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Pardo Fernández, Juan Carlos |
author |
Boente Boente, Graciela Lina |
author_facet |
Boente Boente, Graciela Lina Pardo Fernández, Juan Carlos |
author_role |
author |
author2 |
Pardo Fernández, Juan Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hypothesis Testing Nonparametric Regression Models Robust Inference Smoothing Techniques |
topic |
Hypothesis Testing Nonparametric Regression Models Robust Inference Smoothing Techniques |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set. Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pardo Fernández, Juan Carlos. Universidad de Vigo; España |
description |
The problem of testing the null hypothesis that the regression functions of two populations are equal versus one-sided alternatives under a general nonparametric homoscedastic regression model is considered. To protect against atypical observations, the test statistic is based on the residuals obtained by using a robust estimate for the regression function under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed tests with the classical one obtained using local averages. A sensitivity analysis is carried on a real data set. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18946 Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-168 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18946 |
identifier_str_mv |
Boente Boente, Graciela Lina; Pardo Fernández, Juan Carlos; Robust testing for superiority between two regression curves; Elsevier Science; Computational Statistics And Data Analysis; 97; 5-2016; 151-168 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2015.12.002 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947315003023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613283268526080 |
score |
13.069144 |