Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots
- Autores
- Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo Oscar; Rossomando, Francisco Guido; Pérez Alcocer, Ricardo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- By relying on the input–output feedback linearization approach, a novel adaptive controller for flexible joint robots is proposed in this work. First, a model-based controller is developed to get a structure that is useful in the development of the adaptive controller. The adaptive version is developed by using two techniques. To stabilize the output function, an adaptive neural network controller is used, which approximates the non-linear function that contains the uncertainties. The desired rotor position required by the input–output feedback linearization controller is defined with the structure of a link dynamics adaptive regressor-based controller. The main reason to adopt the mentioned structure in the definition of the desired rotor link position is to guarantee its differentiability. Real-time experiment comparisons among the model-based controller, a model-based controller with desired compensation, an adaptive controller based on joint torque feedback, and an adaptive neural network-based controller are carried out. Experimental results support the theory reported in this document and the accuracy of the proposed approach.
Fil: Montoya Cháirez, Jorge. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México
Fil: Moreno Valenzuela, Javier. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México
Fil: Santibáñez, Víctor. Instituto Tecnologico de la Laguna; México
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Pérez Alcocer, Ricardo. Consejo Nacional de Ciencia y Tecnología; México. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México - Materia
-
Flexible robots
Adaptive neural networks
Trajectory control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210810
Ver los metadatos del registro completo
id |
CONICETDig_bd70d460d32574812dcfe258e2653c2b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210810 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robotsMontoya Cháirez, JorgeMoreno Valenzuela, JavierSantibáñez, VíctorCarelli Albarracin, Ricardo OscarRossomando, Francisco GuidoPérez Alcocer, RicardoFlexible robotsAdaptive neural networksTrajectory controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2By relying on the input–output feedback linearization approach, a novel adaptive controller for flexible joint robots is proposed in this work. First, a model-based controller is developed to get a structure that is useful in the development of the adaptive controller. The adaptive version is developed by using two techniques. To stabilize the output function, an adaptive neural network controller is used, which approximates the non-linear function that contains the uncertainties. The desired rotor position required by the input–output feedback linearization controller is defined with the structure of a link dynamics adaptive regressor-based controller. The main reason to adopt the mentioned structure in the definition of the desired rotor link position is to guarantee its differentiability. Real-time experiment comparisons among the model-based controller, a model-based controller with desired compensation, an adaptive controller based on joint torque feedback, and an adaptive neural network-based controller are carried out. Experimental results support the theory reported in this document and the accuracy of the proposed approach.Fil: Montoya Cháirez, Jorge. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; MéxicoFil: Moreno Valenzuela, Javier. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; MéxicoFil: Santibáñez, Víctor. Instituto Tecnologico de la Laguna; MéxicoFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Pérez Alcocer, Ricardo. Consejo Nacional de Ciencia y Tecnología; México. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; MéxicoInstitution of Engineering and Technology2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210810Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo Oscar; Rossomando, Francisco Guido; et al.; Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots; Institution of Engineering and Technology; IET Control Theory and Applications; 16; 1; 1-2022; 31-501751-8644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/cth2.12202info:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.12202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:06Zoai:ri.conicet.gov.ar:11336/210810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:06.452CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
title |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
spellingShingle |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots Montoya Cháirez, Jorge Flexible robots Adaptive neural networks Trajectory control |
title_short |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
title_full |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
title_fullStr |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
title_full_unstemmed |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
title_sort |
Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots |
dc.creator.none.fl_str_mv |
Montoya Cháirez, Jorge Moreno Valenzuela, Javier Santibáñez, Víctor Carelli Albarracin, Ricardo Oscar Rossomando, Francisco Guido Pérez Alcocer, Ricardo |
author |
Montoya Cháirez, Jorge |
author_facet |
Montoya Cháirez, Jorge Moreno Valenzuela, Javier Santibáñez, Víctor Carelli Albarracin, Ricardo Oscar Rossomando, Francisco Guido Pérez Alcocer, Ricardo |
author_role |
author |
author2 |
Moreno Valenzuela, Javier Santibáñez, Víctor Carelli Albarracin, Ricardo Oscar Rossomando, Francisco Guido Pérez Alcocer, Ricardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Flexible robots Adaptive neural networks Trajectory control |
topic |
Flexible robots Adaptive neural networks Trajectory control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
By relying on the input–output feedback linearization approach, a novel adaptive controller for flexible joint robots is proposed in this work. First, a model-based controller is developed to get a structure that is useful in the development of the adaptive controller. The adaptive version is developed by using two techniques. To stabilize the output function, an adaptive neural network controller is used, which approximates the non-linear function that contains the uncertainties. The desired rotor position required by the input–output feedback linearization controller is defined with the structure of a link dynamics adaptive regressor-based controller. The main reason to adopt the mentioned structure in the definition of the desired rotor link position is to guarantee its differentiability. Real-time experiment comparisons among the model-based controller, a model-based controller with desired compensation, an adaptive controller based on joint torque feedback, and an adaptive neural network-based controller are carried out. Experimental results support the theory reported in this document and the accuracy of the proposed approach. Fil: Montoya Cháirez, Jorge. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México Fil: Moreno Valenzuela, Javier. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México Fil: Santibáñez, Víctor. Instituto Tecnologico de la Laguna; México Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Pérez Alcocer, Ricardo. Consejo Nacional de Ciencia y Tecnología; México. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México |
description |
By relying on the input–output feedback linearization approach, a novel adaptive controller for flexible joint robots is proposed in this work. First, a model-based controller is developed to get a structure that is useful in the development of the adaptive controller. The adaptive version is developed by using two techniques. To stabilize the output function, an adaptive neural network controller is used, which approximates the non-linear function that contains the uncertainties. The desired rotor position required by the input–output feedback linearization controller is defined with the structure of a link dynamics adaptive regressor-based controller. The main reason to adopt the mentioned structure in the definition of the desired rotor link position is to guarantee its differentiability. Real-time experiment comparisons among the model-based controller, a model-based controller with desired compensation, an adaptive controller based on joint torque feedback, and an adaptive neural network-based controller are carried out. Experimental results support the theory reported in this document and the accuracy of the proposed approach. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210810 Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo Oscar; Rossomando, Francisco Guido; et al.; Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots; Institution of Engineering and Technology; IET Control Theory and Applications; 16; 1; 1-2022; 31-50 1751-8644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210810 |
identifier_str_mv |
Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo Oscar; Rossomando, Francisco Guido; et al.; Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots; Institution of Engineering and Technology; IET Control Theory and Applications; 16; 1; 1-2022; 31-50 1751-8644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1049/cth2.12202 info:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.12202 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613129969860608 |
score |
13.070432 |