Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
Mobile robots
Nonlineal systems
Adaptive neural networks
Sliding mode control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37140
Ver los metadatos del registro completo
id |
CONICETDig_adc8222dab2d8bca64335c9302124cde |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37140 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural NetworksRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarMobile robotsNonlineal systemsAdaptive neural networksSliding mode controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaRomanian Society of Control Engineering and Technical Informatics2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37140Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-211454-8658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=1575info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:35Zoai:ri.conicet.gov.ar:11336/37140instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:35.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
title |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
spellingShingle |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks Rossomando, Francisco Guido Mobile robots Nonlineal systems Adaptive neural networks Sliding mode control |
title_short |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
title_full |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
title_fullStr |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
title_full_unstemmed |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
title_sort |
Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Mobile robots Nonlineal systems Adaptive neural networks Sliding mode control |
topic |
Mobile robots Nonlineal systems Adaptive neural networks Sliding mode control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37140 Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-21 1454-8658 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37140 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-21 1454-8658 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=1575 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Romanian Society of Control Engineering and Technical Informatics |
publisher.none.fl_str_mv |
Romanian Society of Control Engineering and Technical Informatics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613312057180160 |
score |
13.070432 |