Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

Autores
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Materia
Mobile robots
Nonlineal systems
Adaptive neural networks
Sliding mode control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37140

id CONICETDig_adc8222dab2d8bca64335c9302124cde
oai_identifier_str oai:ri.conicet.gov.ar:11336/37140
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural NetworksRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarMobile robotsNonlineal systemsAdaptive neural networksSliding mode controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaRomanian Society of Control Engineering and Technical Informatics2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37140Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-211454-8658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=1575info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:35Zoai:ri.conicet.gov.ar:11336/37140instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:35.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
title Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
spellingShingle Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
Rossomando, Francisco Guido
Mobile robots
Nonlineal systems
Adaptive neural networks
Sliding mode control
title_short Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
title_full Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
title_fullStr Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
title_full_unstemmed Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
title_sort Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
dc.creator.none.fl_str_mv Rossomando, Francisco Guido
Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author Rossomando, Francisco Guido
author_facet Rossomando, Francisco Guido
Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author_role author
author2 Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author2_role author
author
dc.subject.none.fl_str_mv Mobile robots
Nonlineal systems
Adaptive neural networks
Sliding mode control
topic Mobile robots
Nonlineal systems
Adaptive neural networks
Sliding mode control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
description In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertainties
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37140
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-21
1454-8658
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37140
identifier_str_mv Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks; Romanian Society of Control Engineering and Technical Informatics; Control Engineering And Applied Informatics; 16; 1; 10-2014; 12-21
1454-8658
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=1575
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Romanian Society of Control Engineering and Technical Informatics
publisher.none.fl_str_mv Romanian Society of Control Engineering and Technical Informatics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613312057180160
score 13.070432