Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks
- Autores
- Lopez Sanchez, Ivan; Rossomando, Francisco Guido; Pérez Alcocer, Ricardo; Soria, Carlos Miguel; Carelli, Ricardo; Moreno Valenzuela, Javier
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this document, the development and experimental validation of a nonlinear controller with an adaptive disturbance compensation system applied on a quadrotor are presented. The introduced scheme relies on a generalized regression neural network (GRNN). The proposed scheme has a structure consisting of an inner control loop inaccessible to the user (i.e., an embedded controller) and an outer control loop which generates commands for the inner control loop. The adaptive GRNN is applied in the outer control loop. The proposed approach lies in the aptitude of the GRNN to estimate the disturbances and unmodeled dynamic effects without requiring accurate knowledge of the quadrotor parameters. The adaptation laws are deduced from a rigorous convergence analysis ensuring asymptotic trajectory tracking. The proposed control scheme is implemented on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an adaptive model regressor-based scheme, and an adaptive neural-network controller are carried out. The experimental results validate the functionality of the novel control scheme and show a performance improvement since smaller tracking error values are produced.
Fil: Lopez Sanchez, Ivan. INSTITUTO POLITÉCNICO NACIONAL (IPN);
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Pérez Alcocer, Ricardo. INSTITUTO POLITÉCNICO NACIONAL (IPN);
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli, Ricardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Moreno Valenzuela, Javier. INSTITUTO POLITÉCNICO NACIONAL (IPN); - Materia
-
ADAPTIVE CONTROL
GENERALIZED REGRESSION NEURAL NETWORK
QUADROTOR
REAL-TIME EXPERIMENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/183239
Ver los metadatos del registro completo
id |
CONICETDig_b64070db9f49c5e65224cfd3eda239ae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/183239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networksLopez Sanchez, IvanRossomando, Francisco GuidoPérez Alcocer, RicardoSoria, Carlos MiguelCarelli, RicardoMoreno Valenzuela, JavierADAPTIVE CONTROLGENERALIZED REGRESSION NEURAL NETWORKQUADROTORREAL-TIME EXPERIMENTShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this document, the development and experimental validation of a nonlinear controller with an adaptive disturbance compensation system applied on a quadrotor are presented. The introduced scheme relies on a generalized regression neural network (GRNN). The proposed scheme has a structure consisting of an inner control loop inaccessible to the user (i.e., an embedded controller) and an outer control loop which generates commands for the inner control loop. The adaptive GRNN is applied in the outer control loop. The proposed approach lies in the aptitude of the GRNN to estimate the disturbances and unmodeled dynamic effects without requiring accurate knowledge of the quadrotor parameters. The adaptation laws are deduced from a rigorous convergence analysis ensuring asymptotic trajectory tracking. The proposed control scheme is implemented on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an adaptive model regressor-based scheme, and an adaptive neural-network controller are carried out. The experimental results validate the functionality of the novel control scheme and show a performance improvement since smaller tracking error values are produced.Fil: Lopez Sanchez, Ivan. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Pérez Alcocer, Ricardo. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli, Ricardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Moreno Valenzuela, Javier. INSTITUTO POLITÉCNICO NACIONAL (IPN);Elsevier Science2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183239Lopez Sanchez, Ivan; Rossomando, Francisco Guido; Pérez Alcocer, Ricardo; Soria, Carlos Miguel; Carelli, Ricardo; et al.; Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks; Elsevier Science; Neurocomputing; 460; 6-2021; 243-2550925-2312CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0925231221010092info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2021.06.079info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:05Zoai:ri.conicet.gov.ar:11336/183239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:05.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
title |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
spellingShingle |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks Lopez Sanchez, Ivan ADAPTIVE CONTROL GENERALIZED REGRESSION NEURAL NETWORK QUADROTOR REAL-TIME EXPERIMENTS |
title_short |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
title_full |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
title_fullStr |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
title_full_unstemmed |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
title_sort |
Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks |
dc.creator.none.fl_str_mv |
Lopez Sanchez, Ivan Rossomando, Francisco Guido Pérez Alcocer, Ricardo Soria, Carlos Miguel Carelli, Ricardo Moreno Valenzuela, Javier |
author |
Lopez Sanchez, Ivan |
author_facet |
Lopez Sanchez, Ivan Rossomando, Francisco Guido Pérez Alcocer, Ricardo Soria, Carlos Miguel Carelli, Ricardo Moreno Valenzuela, Javier |
author_role |
author |
author2 |
Rossomando, Francisco Guido Pérez Alcocer, Ricardo Soria, Carlos Miguel Carelli, Ricardo Moreno Valenzuela, Javier |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ADAPTIVE CONTROL GENERALIZED REGRESSION NEURAL NETWORK QUADROTOR REAL-TIME EXPERIMENTS |
topic |
ADAPTIVE CONTROL GENERALIZED REGRESSION NEURAL NETWORK QUADROTOR REAL-TIME EXPERIMENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this document, the development and experimental validation of a nonlinear controller with an adaptive disturbance compensation system applied on a quadrotor are presented. The introduced scheme relies on a generalized regression neural network (GRNN). The proposed scheme has a structure consisting of an inner control loop inaccessible to the user (i.e., an embedded controller) and an outer control loop which generates commands for the inner control loop. The adaptive GRNN is applied in the outer control loop. The proposed approach lies in the aptitude of the GRNN to estimate the disturbances and unmodeled dynamic effects without requiring accurate knowledge of the quadrotor parameters. The adaptation laws are deduced from a rigorous convergence analysis ensuring asymptotic trajectory tracking. The proposed control scheme is implemented on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an adaptive model regressor-based scheme, and an adaptive neural-network controller are carried out. The experimental results validate the functionality of the novel control scheme and show a performance improvement since smaller tracking error values are produced. Fil: Lopez Sanchez, Ivan. INSTITUTO POLITÉCNICO NACIONAL (IPN); Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Pérez Alcocer, Ricardo. INSTITUTO POLITÉCNICO NACIONAL (IPN); Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli, Ricardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Moreno Valenzuela, Javier. INSTITUTO POLITÉCNICO NACIONAL (IPN); |
description |
In this document, the development and experimental validation of a nonlinear controller with an adaptive disturbance compensation system applied on a quadrotor are presented. The introduced scheme relies on a generalized regression neural network (GRNN). The proposed scheme has a structure consisting of an inner control loop inaccessible to the user (i.e., an embedded controller) and an outer control loop which generates commands for the inner control loop. The adaptive GRNN is applied in the outer control loop. The proposed approach lies in the aptitude of the GRNN to estimate the disturbances and unmodeled dynamic effects without requiring accurate knowledge of the quadrotor parameters. The adaptation laws are deduced from a rigorous convergence analysis ensuring asymptotic trajectory tracking. The proposed control scheme is implemented on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an adaptive model regressor-based scheme, and an adaptive neural-network controller are carried out. The experimental results validate the functionality of the novel control scheme and show a performance improvement since smaller tracking error values are produced. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/183239 Lopez Sanchez, Ivan; Rossomando, Francisco Guido; Pérez Alcocer, Ricardo; Soria, Carlos Miguel; Carelli, Ricardo; et al.; Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks; Elsevier Science; Neurocomputing; 460; 6-2021; 243-255 0925-2312 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/183239 |
identifier_str_mv |
Lopez Sanchez, Ivan; Rossomando, Francisco Guido; Pérez Alcocer, Ricardo; Soria, Carlos Miguel; Carelli, Ricardo; et al.; Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks; Elsevier Science; Neurocomputing; 460; 6-2021; 243-255 0925-2312 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0925231221010092 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2021.06.079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613129102688256 |
score |
13.070432 |