On coloring problems with local constraints
- Autores
- Bonomo, Flavia; Faenza, Yuri; Oriolo, Gianpaolo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16].
Fil: Bonomo, Flavia. Universita Tor Vergata; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Faenza, Yuri. Universita Di Padova; Italia
Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia - Materia
-
Graph Coloring
Clique-Trees
Unit Interval Graphs
Computational Complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14888
Ver los metadatos del registro completo
id |
CONICETDig_bd1fd493b6f2e815482c48db578011ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14888 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On coloring problems with local constraintsBonomo, FlaviaFaenza, YuriOriolo, GianpaoloGraph ColoringClique-TreesUnit Interval GraphsComputational Complexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16].Fil: Bonomo, Flavia. Universita Tor Vergata; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Faenza, Yuri. Universita Di Padova; ItaliaFil: Oriolo, Gianpaolo. Universita Tor Vergata; ItaliaElsevier2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14888Bonomo, Flavia; Faenza, Yuri; Oriolo, Gianpaolo; On coloring problems with local constraints; Elsevier; Discrete Mathematics; 312; 12-13; 4-2012; 2027-20390012-365Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2012.03.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012365X12001343info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:28Zoai:ri.conicet.gov.ar:11336/14888instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:28.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On coloring problems with local constraints |
title |
On coloring problems with local constraints |
spellingShingle |
On coloring problems with local constraints Bonomo, Flavia Graph Coloring Clique-Trees Unit Interval Graphs Computational Complexity |
title_short |
On coloring problems with local constraints |
title_full |
On coloring problems with local constraints |
title_fullStr |
On coloring problems with local constraints |
title_full_unstemmed |
On coloring problems with local constraints |
title_sort |
On coloring problems with local constraints |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Faenza, Yuri Oriolo, Gianpaolo |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Faenza, Yuri Oriolo, Gianpaolo |
author_role |
author |
author2 |
Faenza, Yuri Oriolo, Gianpaolo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Graph Coloring Clique-Trees Unit Interval Graphs Computational Complexity |
topic |
Graph Coloring Clique-Trees Unit Interval Graphs Computational Complexity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16]. Fil: Bonomo, Flavia. Universita Tor Vergata; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Faenza, Yuri. Universita Di Padova; Italia Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia |
description |
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16]. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14888 Bonomo, Flavia; Faenza, Yuri; Oriolo, Gianpaolo; On coloring problems with local constraints; Elsevier; Discrete Mathematics; 312; 12-13; 4-2012; 2027-2039 0012-365X |
url |
http://hdl.handle.net/11336/14888 |
identifier_str_mv |
Bonomo, Flavia; Faenza, Yuri; Oriolo, Gianpaolo; On coloring problems with local constraints; Elsevier; Discrete Mathematics; 312; 12-13; 4-2012; 2027-2039 0012-365X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2012.03.019 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012365X12001343 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613673075605504 |
score |
13.070432 |