Clique coloring EPT graphs on bounded degree trees

Autores
de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.
Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
GRAPH
CLIQUE
COLORING
EPT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/271976

id CONICETDig_28dae7bc4d6e57a2d8b014c4f61b466a
oai_identifier_str oai:ri.conicet.gov.ar:11336/271976
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Clique coloring EPT graphs on bounded degree treesde Caria, Pablo JesúsMazzoleni, María PíaPayo Vidal, María GuadalupeGRAPHCLIQUECOLORINGEPThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaUnión Matemática Argentina2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271976de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-1010041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v68n1a06info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.3511info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:18Zoai:ri.conicet.gov.ar:11336/271976instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:18.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Clique coloring EPT graphs on bounded degree trees
title Clique coloring EPT graphs on bounded degree trees
spellingShingle Clique coloring EPT graphs on bounded degree trees
de Caria, Pablo Jesús
GRAPH
CLIQUE
COLORING
EPT
title_short Clique coloring EPT graphs on bounded degree trees
title_full Clique coloring EPT graphs on bounded degree trees
title_fullStr Clique coloring EPT graphs on bounded degree trees
title_full_unstemmed Clique coloring EPT graphs on bounded degree trees
title_sort Clique coloring EPT graphs on bounded degree trees
dc.creator.none.fl_str_mv de Caria, Pablo Jesús
Mazzoleni, María Pía
Payo Vidal, María Guadalupe
author de Caria, Pablo Jesús
author_facet de Caria, Pablo Jesús
Mazzoleni, María Pía
Payo Vidal, María Guadalupe
author_role author
author2 Mazzoleni, María Pía
Payo Vidal, María Guadalupe
author2_role author
author
dc.subject.none.fl_str_mv GRAPH
CLIQUE
COLORING
EPT
topic GRAPH
CLIQUE
COLORING
EPT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.
Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/271976
de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-101
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/271976
identifier_str_mv de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-101
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v68n1a06
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.3511
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613305716441088
score 13.069144