Clique coloring EPT graphs on bounded degree trees
- Autores
- de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.
Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
GRAPH
CLIQUE
COLORING
EPT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271976
Ver los metadatos del registro completo
id |
CONICETDig_28dae7bc4d6e57a2d8b014c4f61b466a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271976 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Clique coloring EPT graphs on bounded degree treesde Caria, Pablo JesúsMazzoleni, María PíaPayo Vidal, María GuadalupeGRAPHCLIQUECOLORINGEPThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable.Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaUnión Matemática Argentina2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271976de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-1010041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v68n1a06info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.3511info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:18Zoai:ri.conicet.gov.ar:11336/271976instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:18.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Clique coloring EPT graphs on bounded degree trees |
title |
Clique coloring EPT graphs on bounded degree trees |
spellingShingle |
Clique coloring EPT graphs on bounded degree trees de Caria, Pablo Jesús GRAPH CLIQUE COLORING EPT |
title_short |
Clique coloring EPT graphs on bounded degree trees |
title_full |
Clique coloring EPT graphs on bounded degree trees |
title_fullStr |
Clique coloring EPT graphs on bounded degree trees |
title_full_unstemmed |
Clique coloring EPT graphs on bounded degree trees |
title_sort |
Clique coloring EPT graphs on bounded degree trees |
dc.creator.none.fl_str_mv |
de Caria, Pablo Jesús Mazzoleni, María Pía Payo Vidal, María Guadalupe |
author |
de Caria, Pablo Jesús |
author_facet |
de Caria, Pablo Jesús Mazzoleni, María Pía Payo Vidal, María Guadalupe |
author_role |
author |
author2 |
Mazzoleni, María Pía Payo Vidal, María Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GRAPH CLIQUE COLORING EPT |
topic |
GRAPH CLIQUE COLORING EPT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable. Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Payo Vidal, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree h , we say that the graph is [ h , 2 , 2 ] . If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and [ h , 2 , 2 ] -star graphs. In this paper, we prove that [ 4 , 2 , 2 ] -star graphs are 2 -clique colorable, we find other classes of EPT-star graphs that are also 2 -clique colorable, and we study the values of h such that the class [ h , 2 , 2 ] -star is 3 -clique colorable. If a graph belongs to [ 4 , 2 , 2 ] or [ 5 , 2 , 2 ] , we prove that it is 3 -clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are 2 -clique colorable. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271976 de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-101 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271976 |
identifier_str_mv |
de Caria, Pablo Jesús; Mazzoleni, María Pía; Payo Vidal, María Guadalupe; Clique coloring EPT graphs on bounded degree trees; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 68; 1; 3-2025; 79-101 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v68n1a06 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.3511 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613305716441088 |
score |
13.069144 |