Subspaces with extra invariance nearest to observed data

Autores
Cabrelli, Carlos; Mosquera, Carolina Alejandra
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Sampling
Shift Invariant Spaces
Extra Invariance
Paley-Wiener Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18861

id CONICETDig_bc30b34dbc41281bcd604eb4b3219ea3
oai_identifier_str oai:ri.conicet.gov.ar:11336/18861
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Subspaces with extra invariance nearest to observed dataCabrelli, CarlosMosquera, Carolina AlejandraSamplingShift Invariant SpacesExtra InvariancePaley-Wiener Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18861Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-6761063-5203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.12.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001700info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.03187info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:04Zoai:ri.conicet.gov.ar:11336/18861instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:04.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Subspaces with extra invariance nearest to observed data
title Subspaces with extra invariance nearest to observed data
spellingShingle Subspaces with extra invariance nearest to observed data
Cabrelli, Carlos
Sampling
Shift Invariant Spaces
Extra Invariance
Paley-Wiener Spaces
title_short Subspaces with extra invariance nearest to observed data
title_full Subspaces with extra invariance nearest to observed data
title_fullStr Subspaces with extra invariance nearest to observed data
title_full_unstemmed Subspaces with extra invariance nearest to observed data
title_sort Subspaces with extra invariance nearest to observed data
dc.creator.none.fl_str_mv Cabrelli, Carlos
Mosquera, Carolina Alejandra
author Cabrelli, Carlos
author_facet Cabrelli, Carlos
Mosquera, Carolina Alejandra
author_role author
author2 Mosquera, Carolina Alejandra
author2_role author
dc.subject.none.fl_str_mv Sampling
Shift Invariant Spaces
Extra Invariance
Paley-Wiener Spaces
topic Sampling
Shift Invariant Spaces
Extra Invariance
Paley-Wiener Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18861
Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-676
1063-5203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18861
identifier_str_mv Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-676
1063-5203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.12.001
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001700
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.03187
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613387082792960
score 13.070432