Subspaces with extra invariance nearest to observed data
- Autores
- Cabrelli, Carlos; Mosquera, Carolina Alejandra
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Sampling
Shift Invariant Spaces
Extra Invariance
Paley-Wiener Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18861
Ver los metadatos del registro completo
id |
CONICETDig_bc30b34dbc41281bcd604eb4b3219ea3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18861 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Subspaces with extra invariance nearest to observed dataCabrelli, CarlosMosquera, Carolina AlejandraSamplingShift Invariant SpacesExtra InvariancePaley-Wiener Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18861Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-6761063-5203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.12.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001700info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.03187info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:04Zoai:ri.conicet.gov.ar:11336/18861instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:04.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Subspaces with extra invariance nearest to observed data |
title |
Subspaces with extra invariance nearest to observed data |
spellingShingle |
Subspaces with extra invariance nearest to observed data Cabrelli, Carlos Sampling Shift Invariant Spaces Extra Invariance Paley-Wiener Spaces |
title_short |
Subspaces with extra invariance nearest to observed data |
title_full |
Subspaces with extra invariance nearest to observed data |
title_fullStr |
Subspaces with extra invariance nearest to observed data |
title_full_unstemmed |
Subspaces with extra invariance nearest to observed data |
title_sort |
Subspaces with extra invariance nearest to observed data |
dc.creator.none.fl_str_mv |
Cabrelli, Carlos Mosquera, Carolina Alejandra |
author |
Cabrelli, Carlos |
author_facet |
Cabrelli, Carlos Mosquera, Carolina Alejandra |
author_role |
author |
author2 |
Mosquera, Carolina Alejandra |
author2_role |
author |
dc.subject.none.fl_str_mv |
Sampling Shift Invariant Spaces Extra Invariance Paley-Wiener Spaces |
topic |
Sampling Shift Invariant Spaces Extra Invariance Paley-Wiener Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem. Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18861 Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-676 1063-5203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18861 |
identifier_str_mv |
Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-676 1063-5203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.12.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001700 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.03187 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613387082792960 |
score |
13.070432 |