Extra Invariance of a Shift-Invariant Space in LCA Groups
- Autores
- Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance.
Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Shift-Invariant Space
Translation-Invariant Space
Lca Groups
Range Functions
Fiber Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15027
Ver los metadatos del registro completo
id |
CONICETDig_6c3e3e4abf8022f679d4daeebe58b4d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15027 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extra Invariance of a Shift-Invariant Space in LCA GroupsAnastasio, MagalíCabrelli, CarlosPaternostro, VictoriaShift-Invariant SpaceTranslation-Invariant SpaceLca GroupsRange FunctionsFiber Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance.Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15027Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-5370022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10004518info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.05.040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:19Zoai:ri.conicet.gov.ar:11336/15027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:20.068CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
title |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
spellingShingle |
Extra Invariance of a Shift-Invariant Space in LCA Groups Anastasio, Magalí Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
title_short |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
title_full |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
title_fullStr |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
title_full_unstemmed |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
title_sort |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
dc.creator.none.fl_str_mv |
Anastasio, Magalí Cabrelli, Carlos Paternostro, Victoria |
author |
Anastasio, Magalí |
author_facet |
Anastasio, Magalí Cabrelli, Carlos Paternostro, Victoria |
author_role |
author |
author2 |
Cabrelli, Carlos Paternostro, Victoria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
topic |
Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15027 Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-537 0022-247X |
url |
http://hdl.handle.net/11336/15027 |
identifier_str_mv |
Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-537 0022-247X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10004518 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.05.040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269516472516608 |
score |
13.13397 |