Extra Invariance of a Shift-Invariant Space in LCA Groups
- Autores
- Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance.
Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Shift-Invariant Space
Translation-Invariant Space
Lca Groups
Range Functions
Fiber Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15027
Ver los metadatos del registro completo
| id |
CONICETDig_6c3e3e4abf8022f679d4daeebe58b4d7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15027 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Extra Invariance of a Shift-Invariant Space in LCA GroupsAnastasio, MagalíCabrelli, CarlosPaternostro, VictoriaShift-Invariant SpaceTranslation-Invariant SpaceLca GroupsRange FunctionsFiber Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance.Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15027Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-5370022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10004518info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.05.040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:47:21Zoai:ri.conicet.gov.ar:11336/15027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:47:22.011CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| title |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| spellingShingle |
Extra Invariance of a Shift-Invariant Space in LCA Groups Anastasio, Magalí Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
| title_short |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| title_full |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| title_fullStr |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| title_full_unstemmed |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| title_sort |
Extra Invariance of a Shift-Invariant Space in LCA Groups |
| dc.creator.none.fl_str_mv |
Anastasio, Magalí Cabrelli, Carlos Paternostro, Victoria |
| author |
Anastasio, Magalí |
| author_facet |
Anastasio, Magalí Cabrelli, Carlos Paternostro, Victoria |
| author_role |
author |
| author2 |
Cabrelli, Carlos Paternostro, Victoria |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
| topic |
Shift-Invariant Space Translation-Invariant Space Lca Groups Range Functions Fiber Spaces |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. Fil: Anastasio, Magalí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cabrelli, Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M" containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15027 Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-537 0022-247X |
| url |
http://hdl.handle.net/11336/15027 |
| identifier_str_mv |
Anastasio, Magalí; Cabrelli, Carlos; Paternostro, Victoria; Extra Invariance of a Shift-Invariant Space in LCA Groups; Elsevier; Journal Of Mathematical Analysis And Applications; 370; 2; 10-2010; 530-537 0022-247X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10004518 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.05.040 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597943401054208 |
| score |
12.976206 |