An approximation problem in multiplicatively invariant spaces
- Autores
- Cabrelli, Carlos; Mosquera, Carolina Alejandra; Paternostro, Victoria
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces are closed subspaces of L2(Ω, H) that are invariant under point-wise multiplication byfunctions from a fixed subset of L∞(Ω). Given a finite set of data F ⊆ L2(Ω, H), in this paper weprove the existence and construct an MI space M that best fits F, in the least squares sense. MIspaces are related to shift-invariant (SI) spaces via a fiberization map, which allows us to solve anapproximation problem for SI spaces in the context of locally compact abelian groups. On the otherhand, we introduce the notion of decomposable MI spaces (MI spaces that can be decomposed into anorthogonal sum of MI subspaces) and solve the approximation problem for the class of these spaces.Since SI spaces having extra invariance are in one-to-one relation to decomposable MI spaces, we alsosolve our approximation problem for this class of SI spaces. Finally we prove that translation-invariantspaces are in correspondence with totally decomposable MI spaces.
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
Shift-Invariant Spaces
Extra Invariance
Multiplicatively Invariant Spaces
Approximation. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55464
Ver los metadatos del registro completo
id |
CONICETDig_8b5bb13446029ae0cfd2b269b98b7c30 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An approximation problem in multiplicatively invariant spacesCabrelli, CarlosMosquera, Carolina AlejandraPaternostro, VictoriaShift-Invariant SpacesExtra InvarianceMultiplicatively Invariant SpacesApproximation.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces are closed subspaces of L2(Ω, H) that are invariant under point-wise multiplication byfunctions from a fixed subset of L∞(Ω). Given a finite set of data F ⊆ L2(Ω, H), in this paper weprove the existence and construct an MI space M that best fits F, in the least squares sense. MIspaces are related to shift-invariant (SI) spaces via a fiberization map, which allows us to solve anapproximation problem for SI spaces in the context of locally compact abelian groups. On the otherhand, we introduce the notion of decomposable MI spaces (MI spaces that can be decomposed into anorthogonal sum of MI subspaces) and solve the approximation problem for the class of these spaces.Since SI spaces having extra invariance are in one-to-one relation to decomposable MI spaces, we alsosolve our approximation problem for this class of SI spaces. Finally we prove that translation-invariantspaces are in correspondence with totally decomposable MI spaces.Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAmerican Mathematical Society2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55464Cabrelli, Carlos; Mosquera, Carolina Alejandra; Paternostro, Victoria; An approximation problem in multiplicatively invariant spaces; American Mathematical Society; Contemporary Mathematics; 693; 7-2017; 1-230271-4132CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/conm/693/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.08608info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:16:06Zoai:ri.conicet.gov.ar:11336/55464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:16:06.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An approximation problem in multiplicatively invariant spaces |
title |
An approximation problem in multiplicatively invariant spaces |
spellingShingle |
An approximation problem in multiplicatively invariant spaces Cabrelli, Carlos Shift-Invariant Spaces Extra Invariance Multiplicatively Invariant Spaces Approximation. |
title_short |
An approximation problem in multiplicatively invariant spaces |
title_full |
An approximation problem in multiplicatively invariant spaces |
title_fullStr |
An approximation problem in multiplicatively invariant spaces |
title_full_unstemmed |
An approximation problem in multiplicatively invariant spaces |
title_sort |
An approximation problem in multiplicatively invariant spaces |
dc.creator.none.fl_str_mv |
Cabrelli, Carlos Mosquera, Carolina Alejandra Paternostro, Victoria |
author |
Cabrelli, Carlos |
author_facet |
Cabrelli, Carlos Mosquera, Carolina Alejandra Paternostro, Victoria |
author_role |
author |
author2 |
Mosquera, Carolina Alejandra Paternostro, Victoria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Shift-Invariant Spaces Extra Invariance Multiplicatively Invariant Spaces Approximation. |
topic |
Shift-Invariant Spaces Extra Invariance Multiplicatively Invariant Spaces Approximation. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces are closed subspaces of L2(Ω, H) that are invariant under point-wise multiplication byfunctions from a fixed subset of L∞(Ω). Given a finite set of data F ⊆ L2(Ω, H), in this paper weprove the existence and construct an MI space M that best fits F, in the least squares sense. MIspaces are related to shift-invariant (SI) spaces via a fiberization map, which allows us to solve anapproximation problem for SI spaces in the context of locally compact abelian groups. On the otherhand, we introduce the notion of decomposable MI spaces (MI spaces that can be decomposed into anorthogonal sum of MI subspaces) and solve the approximation problem for the class of these spaces.Since SI spaces having extra invariance are in one-to-one relation to decomposable MI spaces, we alsosolve our approximation problem for this class of SI spaces. Finally we prove that translation-invariantspaces are in correspondence with totally decomposable MI spaces. Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces are closed subspaces of L2(Ω, H) that are invariant under point-wise multiplication byfunctions from a fixed subset of L∞(Ω). Given a finite set of data F ⊆ L2(Ω, H), in this paper weprove the existence and construct an MI space M that best fits F, in the least squares sense. MIspaces are related to shift-invariant (SI) spaces via a fiberization map, which allows us to solve anapproximation problem for SI spaces in the context of locally compact abelian groups. On the otherhand, we introduce the notion of decomposable MI spaces (MI spaces that can be decomposed into anorthogonal sum of MI subspaces) and solve the approximation problem for the class of these spaces.Since SI spaces having extra invariance are in one-to-one relation to decomposable MI spaces, we alsosolve our approximation problem for this class of SI spaces. Finally we prove that translation-invariantspaces are in correspondence with totally decomposable MI spaces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55464 Cabrelli, Carlos; Mosquera, Carolina Alejandra; Paternostro, Victoria; An approximation problem in multiplicatively invariant spaces; American Mathematical Society; Contemporary Mathematics; 693; 7-2017; 1-23 0271-4132 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55464 |
identifier_str_mv |
Cabrelli, Carlos; Mosquera, Carolina Alejandra; Paternostro, Victoria; An approximation problem in multiplicatively invariant spaces; American Mathematical Society; Contemporary Mathematics; 693; 7-2017; 1-23 0271-4132 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/conm/693/ info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.08608 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781604852137984 |
score |
12.982451 |