Riesz bases of exponentials on unbounded multi-tiles
- Autores
- Cabrelli, Carlos; Carbajal, Diana Agustina
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina
Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina - Materia
-
FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88969
Ver los metadatos del registro completo
| id |
CONICETDig_c60575cc13287767bff8c20a05f5638c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88969 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Riesz bases of exponentials on unbounded multi-tilesCabrelli, CarlosCarbajal, Diana AgustinaFRAMES OF EXPONENTIALSMULTI-TILINGPALEY-WIENER SPACESRIESZ BASES OF EXPONENTIALSSHIFT-INVARIANT SPACESSUBMULTI- TILINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.Fil: Cabrelli, Carlos. Universidad de Buenos Aires; ArgentinaFil: Carbajal, Diana Agustina. Universidad de Buenos Aires; ArgentinaAmerican Mathematical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88969Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-20040002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:27Zoai:ri.conicet.gov.ar:11336/88969instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:28.164CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Riesz bases of exponentials on unbounded multi-tiles |
| title |
Riesz bases of exponentials on unbounded multi-tiles |
| spellingShingle |
Riesz bases of exponentials on unbounded multi-tiles Cabrelli, Carlos FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
| title_short |
Riesz bases of exponentials on unbounded multi-tiles |
| title_full |
Riesz bases of exponentials on unbounded multi-tiles |
| title_fullStr |
Riesz bases of exponentials on unbounded multi-tiles |
| title_full_unstemmed |
Riesz bases of exponentials on unbounded multi-tiles |
| title_sort |
Riesz bases of exponentials on unbounded multi-tiles |
| dc.creator.none.fl_str_mv |
Cabrelli, Carlos Carbajal, Diana Agustina |
| author |
Cabrelli, Carlos |
| author_facet |
Cabrelli, Carlos Carbajal, Diana Agustina |
| author_role |
author |
| author2 |
Carbajal, Diana Agustina |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
| topic |
FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case. Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina |
| description |
We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88969 Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004 0002-9939 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/88969 |
| identifier_str_mv |
Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004 0002-9939 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598333351788544 |
| score |
12.81033 |