Riesz bases of exponentials on unbounded multi-tiles
- Autores
- Cabrelli, Carlos; Carbajal, Diana Agustina
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina
Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina - Materia
-
FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88969
Ver los metadatos del registro completo
id |
CONICETDig_c60575cc13287767bff8c20a05f5638c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88969 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Riesz bases of exponentials on unbounded multi-tilesCabrelli, CarlosCarbajal, Diana AgustinaFRAMES OF EXPONENTIALSMULTI-TILINGPALEY-WIENER SPACESRIESZ BASES OF EXPONENTIALSSHIFT-INVARIANT SPACESSUBMULTI- TILINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.Fil: Cabrelli, Carlos. Universidad de Buenos Aires; ArgentinaFil: Carbajal, Diana Agustina. Universidad de Buenos Aires; ArgentinaAmerican Mathematical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88969Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-20040002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:12Zoai:ri.conicet.gov.ar:11336/88969instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:12.258CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Riesz bases of exponentials on unbounded multi-tiles |
title |
Riesz bases of exponentials on unbounded multi-tiles |
spellingShingle |
Riesz bases of exponentials on unbounded multi-tiles Cabrelli, Carlos FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
title_short |
Riesz bases of exponentials on unbounded multi-tiles |
title_full |
Riesz bases of exponentials on unbounded multi-tiles |
title_fullStr |
Riesz bases of exponentials on unbounded multi-tiles |
title_full_unstemmed |
Riesz bases of exponentials on unbounded multi-tiles |
title_sort |
Riesz bases of exponentials on unbounded multi-tiles |
dc.creator.none.fl_str_mv |
Cabrelli, Carlos Carbajal, Diana Agustina |
author |
Cabrelli, Carlos |
author_facet |
Cabrelli, Carlos Carbajal, Diana Agustina |
author_role |
author |
author2 |
Carbajal, Diana Agustina |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
topic |
FRAMES OF EXPONENTIALS MULTI-TILING PALEY-WIENER SPACES RIESZ BASES OF EXPONENTIALS SHIFT-INVARIANT SPACES SUBMULTI- TILING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case. Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina |
description |
We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88969 Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88969 |
identifier_str_mv |
Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614358093529088 |
score |
13.070432 |