Riesz bases of exponentials on unbounded multi-tiles

Autores
Cabrelli, Carlos; Carbajal, Diana Agustina
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina
Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina
Materia
FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88969

id CONICETDig_c60575cc13287767bff8c20a05f5638c
oai_identifier_str oai:ri.conicet.gov.ar:11336/88969
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Riesz bases of exponentials on unbounded multi-tilesCabrelli, CarlosCarbajal, Diana AgustinaFRAMES OF EXPONENTIALSMULTI-TILINGPALEY-WIENER SPACESRIESZ BASES OF EXPONENTIALSSHIFT-INVARIANT SPACESSUBMULTI- TILINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.Fil: Cabrelli, Carlos. Universidad de Buenos Aires; ArgentinaFil: Carbajal, Diana Agustina. Universidad de Buenos Aires; ArgentinaAmerican Mathematical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88969Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-20040002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:12Zoai:ri.conicet.gov.ar:11336/88969instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:12.258CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Riesz bases of exponentials on unbounded multi-tiles
title Riesz bases of exponentials on unbounded multi-tiles
spellingShingle Riesz bases of exponentials on unbounded multi-tiles
Cabrelli, Carlos
FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING
title_short Riesz bases of exponentials on unbounded multi-tiles
title_full Riesz bases of exponentials on unbounded multi-tiles
title_fullStr Riesz bases of exponentials on unbounded multi-tiles
title_full_unstemmed Riesz bases of exponentials on unbounded multi-tiles
title_sort Riesz bases of exponentials on unbounded multi-tiles
dc.creator.none.fl_str_mv Cabrelli, Carlos
Carbajal, Diana Agustina
author Cabrelli, Carlos
author_facet Cabrelli, Carlos
Carbajal, Diana Agustina
author_role author
author2 Carbajal, Diana Agustina
author2_role author
dc.subject.none.fl_str_mv FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING
topic FRAMES OF EXPONENTIALS
MULTI-TILING
PALEY-WIENER SPACES
RIESZ BASES OF EXPONENTIALS
SHIFT-INVARIANT SPACES
SUBMULTI- TILING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
Fil: Cabrelli, Carlos. Universidad de Buenos Aires; Argentina
Fil: Carbajal, Diana Agustina. Universidad de Buenos Aires; Argentina
description We prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88969
Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88969
identifier_str_mv Cabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614358093529088
score 13.070432