Learning optimal smooth invariant subspaces for data approximation
- Autores
- Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation.
Fil: Barbieri, Davide. Universidad Autónoma de Madrid; España
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Hernández, Eugenio. Universidad Autónoma de Madrid; España
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
INVARIANT SUBSPACES
DATA APPROXIMATION
PALEY-WIENER SPACES
OPTIMAL SUBSPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234790
Ver los metadatos del registro completo
id |
CONICETDig_d15a4cff45a5efd8099437cbe89686ce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234790 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning optimal smooth invariant subspaces for data approximationBarbieri, DavideCabrelli, CarlosHernández, EugenioMolter, Ursula MariaINVARIANT SUBSPACESDATA APPROXIMATIONPALEY-WIENER SPACESOPTIMAL SUBSPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation.Fil: Barbieri, Davide. Universidad Autónoma de Madrid; EspañaFil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Hernández, Eugenio. Universidad Autónoma de Madrid; EspañaFil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234790Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Learning optimal smooth invariant subspaces for data approximation; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 538; 2; 3-2024; 1-200022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.128348info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X24002701?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:55Zoai:ri.conicet.gov.ar:11336/234790instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:55.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning optimal smooth invariant subspaces for data approximation |
title |
Learning optimal smooth invariant subspaces for data approximation |
spellingShingle |
Learning optimal smooth invariant subspaces for data approximation Barbieri, Davide INVARIANT SUBSPACES DATA APPROXIMATION PALEY-WIENER SPACES OPTIMAL SUBSPACES |
title_short |
Learning optimal smooth invariant subspaces for data approximation |
title_full |
Learning optimal smooth invariant subspaces for data approximation |
title_fullStr |
Learning optimal smooth invariant subspaces for data approximation |
title_full_unstemmed |
Learning optimal smooth invariant subspaces for data approximation |
title_sort |
Learning optimal smooth invariant subspaces for data approximation |
dc.creator.none.fl_str_mv |
Barbieri, Davide Cabrelli, Carlos Hernández, Eugenio Molter, Ursula Maria |
author |
Barbieri, Davide |
author_facet |
Barbieri, Davide Cabrelli, Carlos Hernández, Eugenio Molter, Ursula Maria |
author_role |
author |
author2 |
Cabrelli, Carlos Hernández, Eugenio Molter, Ursula Maria |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INVARIANT SUBSPACES DATA APPROXIMATION PALEY-WIENER SPACES OPTIMAL SUBSPACES |
topic |
INVARIANT SUBSPACES DATA APPROXIMATION PALEY-WIENER SPACES OPTIMAL SUBSPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation. Fil: Barbieri, Davide. Universidad Autónoma de Madrid; España Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Hernández, Eugenio. Universidad Autónoma de Madrid; España Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234790 Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Learning optimal smooth invariant subspaces for data approximation; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 538; 2; 3-2024; 1-20 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/234790 |
identifier_str_mv |
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Learning optimal smooth invariant subspaces for data approximation; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 538; 2; 3-2024; 1-20 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.128348 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X24002701?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082997328019456 |
score |
13.22299 |