There are no rigid filiform Lie algebras of low dimension
- Autores
- Vera, Sonia Vanesa; Tirao, Paulo Andres
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), there is a non-isomorphic filiform Lie bracket. This follows by constructing non-trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11 (in lower dimensions this is well known.)
Fil: Vera, Sonia Vanesa. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
FILIFORMS LIE ALGEBRAS
DEFORMATIONS
VERGNE'S CONJETURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125072
Ver los metadatos del registro completo
id |
CONICETDig_bb62cea0d2656996e6f5c30ff25e1cae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125072 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
There are no rigid filiform Lie algebras of low dimensionVera, Sonia VanesaTirao, Paulo AndresFILIFORMS LIE ALGEBRASDEFORMATIONSVERGNE'S CONJETUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), there is a non-isomorphic filiform Lie bracket. This follows by constructing non-trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11 (in lower dimensions this is well known.)Fil: Vera, Sonia Vanesa. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tirao, Paulo Andres. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125072Vera, Sonia Vanesa; Tirao, Paulo Andres; There are no rigid filiform Lie algebras of low dimension; Heldermann Verlag; Journal Of Lie Theory; 29; 2; 1-2019; 391-4120949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT29/JLT292/jlt29019.htminfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1709.04793info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:53Zoai:ri.conicet.gov.ar:11336/125072instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:53.517CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
There are no rigid filiform Lie algebras of low dimension |
title |
There are no rigid filiform Lie algebras of low dimension |
spellingShingle |
There are no rigid filiform Lie algebras of low dimension Vera, Sonia Vanesa FILIFORMS LIE ALGEBRAS DEFORMATIONS VERGNE'S CONJETURE |
title_short |
There are no rigid filiform Lie algebras of low dimension |
title_full |
There are no rigid filiform Lie algebras of low dimension |
title_fullStr |
There are no rigid filiform Lie algebras of low dimension |
title_full_unstemmed |
There are no rigid filiform Lie algebras of low dimension |
title_sort |
There are no rigid filiform Lie algebras of low dimension |
dc.creator.none.fl_str_mv |
Vera, Sonia Vanesa Tirao, Paulo Andres |
author |
Vera, Sonia Vanesa |
author_facet |
Vera, Sonia Vanesa Tirao, Paulo Andres |
author_role |
author |
author2 |
Tirao, Paulo Andres |
author2_role |
author |
dc.subject.none.fl_str_mv |
FILIFORMS LIE ALGEBRAS DEFORMATIONS VERGNE'S CONJETURE |
topic |
FILIFORMS LIE ALGEBRAS DEFORMATIONS VERGNE'S CONJETURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), there is a non-isomorphic filiform Lie bracket. This follows by constructing non-trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11 (in lower dimensions this is well known.) Fil: Vera, Sonia Vanesa. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), there is a non-isomorphic filiform Lie bracket. This follows by constructing non-trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11 (in lower dimensions this is well known.) |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125072 Vera, Sonia Vanesa; Tirao, Paulo Andres; There are no rigid filiform Lie algebras of low dimension; Heldermann Verlag; Journal Of Lie Theory; 29; 2; 1-2019; 391-412 0949-5932 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125072 |
identifier_str_mv |
Vera, Sonia Vanesa; Tirao, Paulo Andres; There are no rigid filiform Lie algebras of low dimension; Heldermann Verlag; Journal Of Lie Theory; 29; 2; 1-2019; 391-412 0949-5932 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT29/JLT292/jlt29019.htm info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1709.04793 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270097939365888 |
score |
13.13397 |