The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1
- Autores
- Herrera Granada, Joan Felipe; Tirao, Paulo Andres
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Grunewald and O'Halloran conjectured in 1993 that every complex nilpotent Lie algebra is the degeneration of another, nonisomorphic, Lie algebra. We prove the conjecture for the class of nilpotent Lie algebras admitting a semisimple derivation, and also for 7-dimensional nilpotent Lie algebras. The conjecture remains open for characteristically nilpotent Lie algebras of dimension grater than or equal to 8.
Fil: Herrera Granada, Joan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tirao, Paulo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
DEFORMATIONS
DEGENERATIONS
GRUNEWALD-O'HALLORAN CONJECTURE
NILPOTENT LIE ALGEBRAS
VERGNE'S CONJECTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58455
Ver los metadatos del registro completo
id |
CONICETDig_7677ebca04d75c206bd8b4ba336b243f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58455 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1Herrera Granada, Joan FelipeTirao, Paulo AndresDEFORMATIONSDEGENERATIONSGRUNEWALD-O'HALLORAN CONJECTURENILPOTENT LIE ALGEBRASVERGNE'S CONJECTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Grunewald and O'Halloran conjectured in 1993 that every complex nilpotent Lie algebra is the degeneration of another, nonisomorphic, Lie algebra. We prove the conjecture for the class of nilpotent Lie algebras admitting a semisimple derivation, and also for 7-dimensional nilpotent Lie algebras. The conjecture remains open for characteristically nilpotent Lie algebras of dimension grater than or equal to 8.Fil: Herrera Granada, Joan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tirao, Paulo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaTaylor & Francis2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58455Herrera Granada, Joan Felipe; Tirao, Paulo Andres; The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1; Taylor & Francis; Communications In Algebra; 44; 5; 5-2016; 2180-21920092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2015.1044097?journalCode=lagb20info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2015.1044097info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:02Zoai:ri.conicet.gov.ar:11336/58455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:03.068CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
title |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
spellingShingle |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 Herrera Granada, Joan Felipe DEFORMATIONS DEGENERATIONS GRUNEWALD-O'HALLORAN CONJECTURE NILPOTENT LIE ALGEBRAS VERGNE'S CONJECTURE |
title_short |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
title_full |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
title_fullStr |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
title_full_unstemmed |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
title_sort |
The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1 |
dc.creator.none.fl_str_mv |
Herrera Granada, Joan Felipe Tirao, Paulo Andres |
author |
Herrera Granada, Joan Felipe |
author_facet |
Herrera Granada, Joan Felipe Tirao, Paulo Andres |
author_role |
author |
author2 |
Tirao, Paulo Andres |
author2_role |
author |
dc.subject.none.fl_str_mv |
DEFORMATIONS DEGENERATIONS GRUNEWALD-O'HALLORAN CONJECTURE NILPOTENT LIE ALGEBRAS VERGNE'S CONJECTURE |
topic |
DEFORMATIONS DEGENERATIONS GRUNEWALD-O'HALLORAN CONJECTURE NILPOTENT LIE ALGEBRAS VERGNE'S CONJECTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Grunewald and O'Halloran conjectured in 1993 that every complex nilpotent Lie algebra is the degeneration of another, nonisomorphic, Lie algebra. We prove the conjecture for the class of nilpotent Lie algebras admitting a semisimple derivation, and also for 7-dimensional nilpotent Lie algebras. The conjecture remains open for characteristically nilpotent Lie algebras of dimension grater than or equal to 8. Fil: Herrera Granada, Joan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Tirao, Paulo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Grunewald and O'Halloran conjectured in 1993 that every complex nilpotent Lie algebra is the degeneration of another, nonisomorphic, Lie algebra. We prove the conjecture for the class of nilpotent Lie algebras admitting a semisimple derivation, and also for 7-dimensional nilpotent Lie algebras. The conjecture remains open for characteristically nilpotent Lie algebras of dimension grater than or equal to 8. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58455 Herrera Granada, Joan Felipe; Tirao, Paulo Andres; The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1; Taylor & Francis; Communications In Algebra; 44; 5; 5-2016; 2180-2192 0092-7872 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58455 |
identifier_str_mv |
Herrera Granada, Joan Felipe; Tirao, Paulo Andres; The Grunewald–O'Halloran Conjecture for Nilpotent Lie Algebras of Rank ≥1; Taylor & Francis; Communications In Algebra; 44; 5; 5-2016; 2180-2192 0092-7872 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2015.1044097?journalCode=lagb20 info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2015.1044097 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269497399967744 |
score |
13.13397 |