Linking GC-MS and PTR-TOF-MS fingerprints of food samples
- Autores
- Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; Viola, Roberto; Mark, Tilmann D.; Gasperi, Flavia; Biasioli, Franco
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese.
Fil: Cappellin, Luca. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria
Fil: Aprea, Eugenio. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Wehrens, Ron. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
Fil: Soukoulis, Christos. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
Fil: Viola, Roberto. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
Fil: Mark, Tilmann D.. Universidad de Innsbruck; Austria
Fil: Gasperi, Flavia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
Fil: Biasioli, Franco. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia - Materia
-
PLS
LASSO
PROTON TRANSFER REACTION-MASS SPECTROMETRY
TIME-OF-FLIGHT
PREDICTION
MULTIVARIATE CORRELATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104541
Ver los metadatos del registro completo
id |
CONICETDig_b94646af7eb89d086eaff61f0c2602bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linking GC-MS and PTR-TOF-MS fingerprints of food samplesCappellin, LucaAprea, EugenioGranitto, Pablo MiguelWehrens, RonSoukoulis, ChristosViola, RobertoMark, Tilmann D.Gasperi, FlaviaBiasioli, FrancoPLSLASSOPROTON TRANSFER REACTION-MASS SPECTROMETRYTIME-OF-FLIGHTPREDICTIONMULTIVARIATE CORRELATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese.Fil: Cappellin, Luca. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; AustriaFil: Aprea, Eugenio. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Wehrens, Ron. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Soukoulis, Christos. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Viola, Roberto. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Mark, Tilmann D.. Universidad de Innsbruck; AustriaFil: Gasperi, Flavia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Biasioli, Franco. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaElsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104541Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; et al.; Linking GC-MS and PTR-TOF-MS fingerprints of food samples; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 5-2012; 301-3070169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2012.05.008info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743912001219info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:10Zoai:ri.conicet.gov.ar:11336/104541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:11.029CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
title |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
spellingShingle |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples Cappellin, Luca PLS LASSO PROTON TRANSFER REACTION-MASS SPECTROMETRY TIME-OF-FLIGHT PREDICTION MULTIVARIATE CORRELATION |
title_short |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
title_full |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
title_fullStr |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
title_full_unstemmed |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
title_sort |
Linking GC-MS and PTR-TOF-MS fingerprints of food samples |
dc.creator.none.fl_str_mv |
Cappellin, Luca Aprea, Eugenio Granitto, Pablo Miguel Wehrens, Ron Soukoulis, Christos Viola, Roberto Mark, Tilmann D. Gasperi, Flavia Biasioli, Franco |
author |
Cappellin, Luca |
author_facet |
Cappellin, Luca Aprea, Eugenio Granitto, Pablo Miguel Wehrens, Ron Soukoulis, Christos Viola, Roberto Mark, Tilmann D. Gasperi, Flavia Biasioli, Franco |
author_role |
author |
author2 |
Aprea, Eugenio Granitto, Pablo Miguel Wehrens, Ron Soukoulis, Christos Viola, Roberto Mark, Tilmann D. Gasperi, Flavia Biasioli, Franco |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
PLS LASSO PROTON TRANSFER REACTION-MASS SPECTROMETRY TIME-OF-FLIGHT PREDICTION MULTIVARIATE CORRELATION |
topic |
PLS LASSO PROTON TRANSFER REACTION-MASS SPECTROMETRY TIME-OF-FLIGHT PREDICTION MULTIVARIATE CORRELATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese. Fil: Cappellin, Luca. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria Fil: Aprea, Eugenio. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Wehrens, Ron. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia Fil: Soukoulis, Christos. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia Fil: Viola, Roberto. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia Fil: Mark, Tilmann D.. Universidad de Innsbruck; Austria Fil: Gasperi, Flavia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia Fil: Biasioli, Franco. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia |
description |
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104541 Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; et al.; Linking GC-MS and PTR-TOF-MS fingerprints of food samples; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 5-2012; 301-307 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104541 |
identifier_str_mv |
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; et al.; Linking GC-MS and PTR-TOF-MS fingerprints of food samples; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 5-2012; 301-307 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2012.05.008 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743912001219 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269505861976064 |
score |
13.13397 |