Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS
- Autores
- Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; Biasioli, Franco
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.
Fil: Cappellin, Luca. Fondazione Edmund Mach. Research and Innovation Centre; Italia
Fil: Aprea, Eugenio. Fondazione Edmund Mach. Research and Innovation Centre; Italia
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Romano, Andrea. Fondazione Edmund Mach. Research and Innovation Centre; Italia
Fil: Gasperi, Flavia. Fondazione Edmund Mach. Research and Innovation Centre; Italia
Fil: Biasioli, Franco. Fondazione Edmund Mach. Research and Innovation Centre; Italia - Materia
-
Proton Transfer Reaction Mass Spectrometry
Raspberries
Cultivars
Chemometrics
Data Mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3180
Ver los metadatos del registro completo
id |
CONICETDig_fa126f3efbc529590e812ab5140d82fa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3180 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MSCappellin, LucaAprea, EugenioGranitto, Pablo MiguelRomano, AndreaGasperi, FlaviaBiasioli, FrancoProton Transfer Reaction Mass SpectrometryRaspberriesCultivarsChemometricsData Mininghttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.Fil: Cappellin, Luca. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Aprea, Eugenio. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Romano, Andrea. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Gasperi, Flavia. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Biasioli, Franco. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3180Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; et al.; Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS; Elsevier; Food Research International; 54; 1; 11-2013; 1313-13200963-9969enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0963996913000975info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2013.02.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:13Zoai:ri.conicet.gov.ar:11336/3180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:13.393CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
title |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
spellingShingle |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS Cappellin, Luca Proton Transfer Reaction Mass Spectrometry Raspberries Cultivars Chemometrics Data Mining |
title_short |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
title_full |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
title_fullStr |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
title_full_unstemmed |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
title_sort |
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS |
dc.creator.none.fl_str_mv |
Cappellin, Luca Aprea, Eugenio Granitto, Pablo Miguel Romano, Andrea Gasperi, Flavia Biasioli, Franco |
author |
Cappellin, Luca |
author_facet |
Cappellin, Luca Aprea, Eugenio Granitto, Pablo Miguel Romano, Andrea Gasperi, Flavia Biasioli, Franco |
author_role |
author |
author2 |
Aprea, Eugenio Granitto, Pablo Miguel Romano, Andrea Gasperi, Flavia Biasioli, Franco |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Proton Transfer Reaction Mass Spectrometry Raspberries Cultivars Chemometrics Data Mining |
topic |
Proton Transfer Reaction Mass Spectrometry Raspberries Cultivars Chemometrics Data Mining |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible. Fil: Cappellin, Luca. Fondazione Edmund Mach. Research and Innovation Centre; Italia Fil: Aprea, Eugenio. Fondazione Edmund Mach. Research and Innovation Centre; Italia Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Romano, Andrea. Fondazione Edmund Mach. Research and Innovation Centre; Italia Fil: Gasperi, Flavia. Fondazione Edmund Mach. Research and Innovation Centre; Italia Fil: Biasioli, Franco. Fondazione Edmund Mach. Research and Innovation Centre; Italia |
description |
Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3180 Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; et al.; Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS; Elsevier; Food Research International; 54; 1; 11-2013; 1313-1320 0963-9969 |
url |
http://hdl.handle.net/11336/3180 |
identifier_str_mv |
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; et al.; Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS; Elsevier; Food Research International; 54; 1; 11-2013; 1313-1320 0963-9969 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0963996913000975 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2013.02.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269899692441600 |
score |
13.13397 |