On data analysis in PTR-TOF-MS: From raw spectra to data mining
- Autores
- Cappellin, Luca; Biasioli, Franco; Granitto, Pablo Miguel; Schuhfried, Erna; Soukoulis, Christos; Costa, Fabrizio; Märk, Tilmann D.; Gasperi, Flavia
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTRTOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions.
Fil: Cappellin, Luca. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria
Fil: Biasioli, Franco. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Schuhfried, Erna. Universidad de Innsbruck; Austria
Fil: Soukoulis, Christos. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia
Fil: Costa, Fabrizio. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia
Fil: Märk, Tilmann D.. Universidad de Innsbruck; Austria
Fil: Gasperi, Flavia. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia - Materia
-
Proton Transfer Reaction Mass Spectrometry
Time of Flight
Data Analysis
Data Mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15168
Ver los metadatos del registro completo
id |
CONICETDig_c3640815c79a0cd62c50bdfb3b89c6f5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15168 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On data analysis in PTR-TOF-MS: From raw spectra to data miningCappellin, LucaBiasioli, FrancoGranitto, Pablo MiguelSchuhfried, ErnaSoukoulis, ChristosCosta, FabrizioMärk, Tilmann D.Gasperi, FlaviaProton Transfer Reaction Mass SpectrometryTime of FlightData AnalysisData Mininghttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTRTOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions.Fil: Cappellin, Luca. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; AustriaFil: Biasioli, Franco. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; ItaliaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Schuhfried, Erna. Universidad de Innsbruck; AustriaFil: Soukoulis, Christos. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; ItaliaFil: Costa, Fabrizio. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; ItaliaFil: Märk, Tilmann D.. Universidad de Innsbruck; AustriaFil: Gasperi, Flavia. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; ItaliaElsevier Science2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15168Cappellin, Luca; Biasioli, Franco; Granitto, Pablo Miguel; Schuhfried, Erna; Soukoulis, Christos; et al.; On data analysis in PTR-TOF-MS: From raw spectra to data mining; Elsevier Science; Sensors And Actuators B: Chemical; 155; 1; 7-2011; 183-1900925-4005enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2010.11.044info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400510009135info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:12:02Zoai:ri.conicet.gov.ar:11336/15168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:12:02.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
title |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
spellingShingle |
On data analysis in PTR-TOF-MS: From raw spectra to data mining Cappellin, Luca Proton Transfer Reaction Mass Spectrometry Time of Flight Data Analysis Data Mining |
title_short |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
title_full |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
title_fullStr |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
title_full_unstemmed |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
title_sort |
On data analysis in PTR-TOF-MS: From raw spectra to data mining |
dc.creator.none.fl_str_mv |
Cappellin, Luca Biasioli, Franco Granitto, Pablo Miguel Schuhfried, Erna Soukoulis, Christos Costa, Fabrizio Märk, Tilmann D. Gasperi, Flavia |
author |
Cappellin, Luca |
author_facet |
Cappellin, Luca Biasioli, Franco Granitto, Pablo Miguel Schuhfried, Erna Soukoulis, Christos Costa, Fabrizio Märk, Tilmann D. Gasperi, Flavia |
author_role |
author |
author2 |
Biasioli, Franco Granitto, Pablo Miguel Schuhfried, Erna Soukoulis, Christos Costa, Fabrizio Märk, Tilmann D. Gasperi, Flavia |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Proton Transfer Reaction Mass Spectrometry Time of Flight Data Analysis Data Mining |
topic |
Proton Transfer Reaction Mass Spectrometry Time of Flight Data Analysis Data Mining |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTRTOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions. Fil: Cappellin, Luca. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria Fil: Biasioli, Franco. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Schuhfried, Erna. Universidad de Innsbruck; Austria Fil: Soukoulis, Christos. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia Fil: Costa, Fabrizio. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia Fil: Märk, Tilmann D.. Universidad de Innsbruck; Austria Fil: Gasperi, Flavia. Instituto Agrario San Michele All'adige Fondazione Edmund Mach; Italia |
description |
Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTRTOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15168 Cappellin, Luca; Biasioli, Franco; Granitto, Pablo Miguel; Schuhfried, Erna; Soukoulis, Christos; et al.; On data analysis in PTR-TOF-MS: From raw spectra to data mining; Elsevier Science; Sensors And Actuators B: Chemical; 155; 1; 7-2011; 183-190 0925-4005 |
url |
http://hdl.handle.net/11336/15168 |
identifier_str_mv |
Cappellin, Luca; Biasioli, Franco; Granitto, Pablo Miguel; Schuhfried, Erna; Soukoulis, Christos; et al.; On data analysis in PTR-TOF-MS: From raw spectra to data mining; Elsevier Science; Sensors And Actuators B: Chemical; 155; 1; 7-2011; 183-190 0925-4005 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2010.11.044 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400510009135 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270182665355264 |
score |
13.13397 |