A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space
- Autores
- Vega, Jorge Ruben; Godoy, José Luis; Marchetti, Jacinto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and di- 24 agnosis inmultivariate processes that exhibit collinearmeasurements. A typical PLS regression (PLSR)modeling 25 strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLS- 26 decomposition of the measurements into four terms that belongs to four different subspaces is derived. In 27 Q2 order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped do- 28 mains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further 29 decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this 30 information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the 31 anomaly class from the observed pattern of the four component statistics with respect to their respective confi- 32 dence intervals, and iii) identify the disturbed variables based on the analysis of themain variable contributions 33 to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential appli- 34 cation of this technique to real production systems.
Fil: Vega, Jorge Ruben. Universidad Tecnológica Nacional. Argentina
Fil: Godoy, Jose Luis. Universidad Tecnológica Nacional. Argentina
Fil: Marchetti, Jacinto. Universidad Tecnológica Nacional. Argentina
Peer Reviewed - Materia
-
multivariate processes
PLS-decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Tecnológica Nacional
- OAI Identificador
- oai:ria.utn.edu.ar:20.500.12272/3121
Ver los metadatos del registro completo
id |
RIAUTN_edd9051a3d7b021108b7cfa43eb4981b |
---|---|
oai_identifier_str |
oai:ria.utn.edu.ar:20.500.12272/3121 |
network_acronym_str |
RIAUTN |
repository_id_str |
a |
network_name_str |
Repositorio Institucional Abierto (UTN) |
spelling |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement spaceVega, Jorge RubenGodoy, José LuisMarchetti, Jacintomultivariate processesPLS-decompositionA newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and di- 24 agnosis inmultivariate processes that exhibit collinearmeasurements. A typical PLS regression (PLSR)modeling 25 strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLS- 26 decomposition of the measurements into four terms that belongs to four different subspaces is derived. In 27 Q2 order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped do- 28 mains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further 29 decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this 30 information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the 31 anomaly class from the observed pattern of the four component statistics with respect to their respective confi- 32 dence intervals, and iii) identify the disturbed variables based on the analysis of themain variable contributions 33 to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential appli- 34 cation of this technique to real production systems.Fil: Vega, Jorge Ruben. Universidad Tecnológica Nacional. ArgentinaFil: Godoy, Jose Luis. Universidad Tecnológica Nacional. ArgentinaFil: Marchetti, Jacinto. Universidad Tecnológica Nacional. ArgentinaPeer Reviewed2018-09-14T22:23:22Z2018-09-14T22:23:22Z2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/20.500.12272/3121enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Condiciones de Uso libre desde su aprobaciónAtribución-NoComercial-CompartirIgual 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-04T11:14:35Zoai:ria.utn.edu.ar:20.500.12272/3121instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-04 11:14:35.835Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse |
dc.title.none.fl_str_mv |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
spellingShingle |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space Vega, Jorge Ruben multivariate processes PLS-decomposition |
title_short |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_full |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_fullStr |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_full_unstemmed |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_sort |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
dc.creator.none.fl_str_mv |
Vega, Jorge Ruben Godoy, José Luis Marchetti, Jacinto |
author |
Vega, Jorge Ruben |
author_facet |
Vega, Jorge Ruben Godoy, José Luis Marchetti, Jacinto |
author_role |
author |
author2 |
Godoy, José Luis Marchetti, Jacinto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
multivariate processes PLS-decomposition |
topic |
multivariate processes PLS-decomposition |
dc.description.none.fl_txt_mv |
A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and di- 24 agnosis inmultivariate processes that exhibit collinearmeasurements. A typical PLS regression (PLSR)modeling 25 strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLS- 26 decomposition of the measurements into four terms that belongs to four different subspaces is derived. In 27 Q2 order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped do- 28 mains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further 29 decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this 30 information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the 31 anomaly class from the observed pattern of the four component statistics with respect to their respective confi- 32 dence intervals, and iii) identify the disturbed variables based on the analysis of themain variable contributions 33 to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential appli- 34 cation of this technique to real production systems. Fil: Vega, Jorge Ruben. Universidad Tecnológica Nacional. Argentina Fil: Godoy, Jose Luis. Universidad Tecnológica Nacional. Argentina Fil: Marchetti, Jacinto. Universidad Tecnológica Nacional. Argentina Peer Reviewed |
description |
A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and di- 24 agnosis inmultivariate processes that exhibit collinearmeasurements. A typical PLS regression (PLSR)modeling 25 strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLS- 26 decomposition of the measurements into four terms that belongs to four different subspaces is derived. In 27 Q2 order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped do- 28 mains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further 29 decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this 30 information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the 31 anomaly class from the observed pattern of the four component statistics with respect to their respective confi- 32 dence intervals, and iii) identify the disturbed variables based on the analysis of themain variable contributions 33 to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential appli- 34 cation of this technique to real production systems. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2018-09-14T22:23:22Z 2018-09-14T22:23:22Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12272/3121 |
url |
http://hdl.handle.net/20.500.12272/3121 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso libre desde su aprobación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso libre desde su aprobación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Abierto (UTN) instname:Universidad Tecnológica Nacional |
reponame_str |
Repositorio Institucional Abierto (UTN) |
collection |
Repositorio Institucional Abierto (UTN) |
instname_str |
Universidad Tecnológica Nacional |
repository.name.fl_str_mv |
Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional |
repository.mail.fl_str_mv |
gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar |
_version_ |
1842344355121070080 |
score |
12.623145 |