Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study
- Autores
- Sosa Morales, Marcelo Clemente; Alvarez, Rosa Maria Susana
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Effects induced by the incorporation of lipid II (LII) molecule into phosphatidylglycerol (PG) membranes were studied by Raman microspectroscopy. Spectral behavior of multilayer vesicles in liquid crystalline and gel phases formed by pure PG lipids and by PG/LII mixtures was evaluated. Differences shown by specific spectral markers of the lipid structure were associated with perturbations on the bilayer as response to the LII incorporation. Identification and interpretation of bands assigned to vibrations belonging to groups of the lipid polar region were supported by computational predictions. Quantum‐chemical calculations – B3LYP/6‐311++G(d,p) – were performed for a model charged molecule that mimics the PG lipid moiety in solvated state. Our Raman spectra demonstrate that the lipid phase is a determinant factor for both the bactoprenol tail penetration into the hydrophobic bilayer region and the perturbation degree at the membrane surface by the peptidoglycan moiety, because differential effects were observed for the two lipid systems studied. LII was able to penetrate the hydrophobic region of the lipid bilayer in the fluid phase, reaching the deep core and causing significant alterations in both the carbohydrate chain and the headgroup regions. By contrast, penetration of LII into a bilayer in the gel estate was restricted because of the high lipid packing that characterizes this phase. In this last case, interactions at the membrane surface were also indicative of partial interdigitating effect. Findings presented here provide valuable experimental evidence that contributes to the understanding of the mechanism by which lantibiotics recognize bacterial membranes.
Fil: Sosa Morales, Marcelo Clemente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Alvarez, Rosa Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina - Materia
-
Lipid Ii
Membrane
Raman - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43391
Ver los metadatos del registro completo
id |
CONICETDig_b943bd92585370e931281746596782f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43391 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy studySosa Morales, Marcelo ClementeAlvarez, Rosa Maria SusanaLipid IiMembraneRamanhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Effects induced by the incorporation of lipid II (LII) molecule into phosphatidylglycerol (PG) membranes were studied by Raman microspectroscopy. Spectral behavior of multilayer vesicles in liquid crystalline and gel phases formed by pure PG lipids and by PG/LII mixtures was evaluated. Differences shown by specific spectral markers of the lipid structure were associated with perturbations on the bilayer as response to the LII incorporation. Identification and interpretation of bands assigned to vibrations belonging to groups of the lipid polar region were supported by computational predictions. Quantum‐chemical calculations – B3LYP/6‐311++G(d,p) – were performed for a model charged molecule that mimics the PG lipid moiety in solvated state. Our Raman spectra demonstrate that the lipid phase is a determinant factor for both the bactoprenol tail penetration into the hydrophobic bilayer region and the perturbation degree at the membrane surface by the peptidoglycan moiety, because differential effects were observed for the two lipid systems studied. LII was able to penetrate the hydrophobic region of the lipid bilayer in the fluid phase, reaching the deep core and causing significant alterations in both the carbohydrate chain and the headgroup regions. By contrast, penetration of LII into a bilayer in the gel estate was restricted because of the high lipid packing that characterizes this phase. In this last case, interactions at the membrane surface were also indicative of partial interdigitating effect. Findings presented here provide valuable experimental evidence that contributes to the understanding of the mechanism by which lantibiotics recognize bacterial membranes.Fil: Sosa Morales, Marcelo Clemente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; ArgentinaFil: Alvarez, Rosa Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; ArgentinaJohn Wiley & Sons Ltd2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43391Sosa Morales, Marcelo Clemente; Alvarez, Rosa Maria Susana; Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study; John Wiley & Sons Ltd; Journal Of Raman Spectroscopy; 48; 2; 2-2017; 170-1790377-0486CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jrs.5033info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jrs.5033info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:00Zoai:ri.conicet.gov.ar:11336/43391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:00.86CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
title |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
spellingShingle |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study Sosa Morales, Marcelo Clemente Lipid Ii Membrane Raman |
title_short |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
title_full |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
title_fullStr |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
title_full_unstemmed |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
title_sort |
Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study |
dc.creator.none.fl_str_mv |
Sosa Morales, Marcelo Clemente Alvarez, Rosa Maria Susana |
author |
Sosa Morales, Marcelo Clemente |
author_facet |
Sosa Morales, Marcelo Clemente Alvarez, Rosa Maria Susana |
author_role |
author |
author2 |
Alvarez, Rosa Maria Susana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Lipid Ii Membrane Raman |
topic |
Lipid Ii Membrane Raman |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Effects induced by the incorporation of lipid II (LII) molecule into phosphatidylglycerol (PG) membranes were studied by Raman microspectroscopy. Spectral behavior of multilayer vesicles in liquid crystalline and gel phases formed by pure PG lipids and by PG/LII mixtures was evaluated. Differences shown by specific spectral markers of the lipid structure were associated with perturbations on the bilayer as response to the LII incorporation. Identification and interpretation of bands assigned to vibrations belonging to groups of the lipid polar region were supported by computational predictions. Quantum‐chemical calculations – B3LYP/6‐311++G(d,p) – were performed for a model charged molecule that mimics the PG lipid moiety in solvated state. Our Raman spectra demonstrate that the lipid phase is a determinant factor for both the bactoprenol tail penetration into the hydrophobic bilayer region and the perturbation degree at the membrane surface by the peptidoglycan moiety, because differential effects were observed for the two lipid systems studied. LII was able to penetrate the hydrophobic region of the lipid bilayer in the fluid phase, reaching the deep core and causing significant alterations in both the carbohydrate chain and the headgroup regions. By contrast, penetration of LII into a bilayer in the gel estate was restricted because of the high lipid packing that characterizes this phase. In this last case, interactions at the membrane surface were also indicative of partial interdigitating effect. Findings presented here provide valuable experimental evidence that contributes to the understanding of the mechanism by which lantibiotics recognize bacterial membranes. Fil: Sosa Morales, Marcelo Clemente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina Fil: Alvarez, Rosa Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina |
description |
Effects induced by the incorporation of lipid II (LII) molecule into phosphatidylglycerol (PG) membranes were studied by Raman microspectroscopy. Spectral behavior of multilayer vesicles in liquid crystalline and gel phases formed by pure PG lipids and by PG/LII mixtures was evaluated. Differences shown by specific spectral markers of the lipid structure were associated with perturbations on the bilayer as response to the LII incorporation. Identification and interpretation of bands assigned to vibrations belonging to groups of the lipid polar region were supported by computational predictions. Quantum‐chemical calculations – B3LYP/6‐311++G(d,p) – were performed for a model charged molecule that mimics the PG lipid moiety in solvated state. Our Raman spectra demonstrate that the lipid phase is a determinant factor for both the bactoprenol tail penetration into the hydrophobic bilayer region and the perturbation degree at the membrane surface by the peptidoglycan moiety, because differential effects were observed for the two lipid systems studied. LII was able to penetrate the hydrophobic region of the lipid bilayer in the fluid phase, reaching the deep core and causing significant alterations in both the carbohydrate chain and the headgroup regions. By contrast, penetration of LII into a bilayer in the gel estate was restricted because of the high lipid packing that characterizes this phase. In this last case, interactions at the membrane surface were also indicative of partial interdigitating effect. Findings presented here provide valuable experimental evidence that contributes to the understanding of the mechanism by which lantibiotics recognize bacterial membranes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43391 Sosa Morales, Marcelo Clemente; Alvarez, Rosa Maria Susana; Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study; John Wiley & Sons Ltd; Journal Of Raman Spectroscopy; 48; 2; 2-2017; 170-179 0377-0486 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43391 |
identifier_str_mv |
Sosa Morales, Marcelo Clemente; Alvarez, Rosa Maria Susana; Structural characterization of phosphatidylglycerol model membranes containing the antibiotic target lipid II molecule: a Raman microspectroscopy study; John Wiley & Sons Ltd; Journal Of Raman Spectroscopy; 48; 2; 2-2017; 170-179 0377-0486 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/jrs.5033 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jrs.5033 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613010454216704 |
score |
13.070432 |