Towards an argument-based music recommender system

Autores
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; Simari, Guillermo Ricardo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The significance of recommender systems has steadily grown in recent years as they help users to access relevant items from the vast universe of possibilities available these days. However, most of the research in recommenders is based purely on quantitative aspects, i.e., measures of similarity between items or users. In this paper we introduce a novel hybrid approach to refine recommendations achieved by quantitative methods with a qualitative approach based on argumentation, where suggestions are given after considering several arguments in favor or against the recommendations. In order to accomplish this, we use Defeasible Logic Programming (DeLP) as the underlying formalism for obtaining recommendations. This approach has a number of advantages over other existing recommendation techniques.In particular, recommendations can be refined at any time by adding new polished rules, and explanations may be provided supporting each  recommendation in a way that can be easily understood by the user, by means of the computed arguments.
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
Fil: Budan, Maximiliano Celmo David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
Fil: Capobianco, Marcela. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Materia
DEFEASIBLE ARGUMENTATION
QUALITATIVE RECOMMENDATIONS
RECOMMENDER SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/197052

id CONICETDig_b5e86c8426f2ee3c178643d7b690f742
oai_identifier_str oai:ri.conicet.gov.ar:11336/197052
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Towards an argument-based music recommender systemBriguez, Cristian EmanuelBudan, Maximiliano Celmo DavidDeagustini, Cristhian Ariel DavidMaguitman, Ana GabrielaCapobianco, MarcelaSimari, Guillermo RicardoDEFEASIBLE ARGUMENTATIONQUALITATIVE RECOMMENDATIONSRECOMMENDER SYSTEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The significance of recommender systems has steadily grown in recent years as they help users to access relevant items from the vast universe of possibilities available these days. However, most of the research in recommenders is based purely on quantitative aspects, i.e., measures of similarity between items or users. In this paper we introduce a novel hybrid approach to refine recommendations achieved by quantitative methods with a qualitative approach based on argumentation, where suggestions are given after considering several arguments in favor or against the recommendations. In order to accomplish this, we use Defeasible Logic Programming (DeLP) as the underlying formalism for obtaining recommendations. This approach has a number of advantages over other existing recommendation techniques.In particular, recommendations can be refined at any time by adding new polished rules, and explanations may be provided supporting each  recommendation in a way that can be easily understood by the user, by means of the computed arguments.Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; ArgentinaFil: Budan, Maximiliano Celmo David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; ArgentinaFil: Capobianco, Marcela. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaIOS Press2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197052Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Towards an argument-based music recommender system; IOS Press; Frontiers in Artificial Intelligence and Applications; 245; 1; 9-2012; 83-900922-6389CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ebooks.iospress.nl/volumearticle/7423info:eu-repo/semantics/altIdentifier/doi/10.3233/978-1-61499-111-3-83info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:08Zoai:ri.conicet.gov.ar:11336/197052instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:08.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Towards an argument-based music recommender system
title Towards an argument-based music recommender system
spellingShingle Towards an argument-based music recommender system
Briguez, Cristian Emanuel
DEFEASIBLE ARGUMENTATION
QUALITATIVE RECOMMENDATIONS
RECOMMENDER SYSTEMS
title_short Towards an argument-based music recommender system
title_full Towards an argument-based music recommender system
title_fullStr Towards an argument-based music recommender system
title_full_unstemmed Towards an argument-based music recommender system
title_sort Towards an argument-based music recommender system
dc.creator.none.fl_str_mv Briguez, Cristian Emanuel
Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author Briguez, Cristian Emanuel
author_facet Briguez, Cristian Emanuel
Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author_role author
author2 Budan, Maximiliano Celmo David
Deagustini, Cristhian Ariel David
Maguitman, Ana Gabriela
Capobianco, Marcela
Simari, Guillermo Ricardo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv DEFEASIBLE ARGUMENTATION
QUALITATIVE RECOMMENDATIONS
RECOMMENDER SYSTEMS
topic DEFEASIBLE ARGUMENTATION
QUALITATIVE RECOMMENDATIONS
RECOMMENDER SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The significance of recommender systems has steadily grown in recent years as they help users to access relevant items from the vast universe of possibilities available these days. However, most of the research in recommenders is based purely on quantitative aspects, i.e., measures of similarity between items or users. In this paper we introduce a novel hybrid approach to refine recommendations achieved by quantitative methods with a qualitative approach based on argumentation, where suggestions are given after considering several arguments in favor or against the recommendations. In order to accomplish this, we use Defeasible Logic Programming (DeLP) as the underlying formalism for obtaining recommendations. This approach has a number of advantages over other existing recommendation techniques.In particular, recommendations can be refined at any time by adding new polished rules, and explanations may be provided supporting each  recommendation in a way that can be easily understood by the user, by means of the computed arguments.
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
Fil: Budan, Maximiliano Celmo David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
Fil: Capobianco, Marcela. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
description The significance of recommender systems has steadily grown in recent years as they help users to access relevant items from the vast universe of possibilities available these days. However, most of the research in recommenders is based purely on quantitative aspects, i.e., measures of similarity between items or users. In this paper we introduce a novel hybrid approach to refine recommendations achieved by quantitative methods with a qualitative approach based on argumentation, where suggestions are given after considering several arguments in favor or against the recommendations. In order to accomplish this, we use Defeasible Logic Programming (DeLP) as the underlying formalism for obtaining recommendations. This approach has a number of advantages over other existing recommendation techniques.In particular, recommendations can be refined at any time by adding new polished rules, and explanations may be provided supporting each  recommendation in a way that can be easily understood by the user, by means of the computed arguments.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/197052
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Towards an argument-based music recommender system; IOS Press; Frontiers in Artificial Intelligence and Applications; 245; 1; 9-2012; 83-90
0922-6389
CONICET Digital
CONICET
url http://hdl.handle.net/11336/197052
identifier_str_mv Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Towards an argument-based music recommender system; IOS Press; Frontiers in Artificial Intelligence and Applications; 245; 1; 9-2012; 83-90
0922-6389
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ebooks.iospress.nl/volumearticle/7423
info:eu-repo/semantics/altIdentifier/doi/10.3233/978-1-61499-111-3-83
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269442668494848
score 13.13397