Towards a Recommender Engine for Personalized Visualizations
- Autores
- Mutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner.
Fil: Mutlu, Belgin. Know-Center GmbH; Austria
Fil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Know-Center GmbH; Austria
Fil: Trattner, Christoph. Know-Center GmbH; Austria
Fil: Sabol, Vedran. Know-Center GmbH; Austria - Materia
-
Collaborative Filtering
Crowd-Sourcing
Personalized Visualizations
Recommender Systems
Visualization Recommender - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59455
Ver los metadatos del registro completo
id |
CONICETDig_e4e9b9093a72633a5bb235d72194fae8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59455 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards a Recommender Engine for Personalized VisualizationsMutlu, BelginVeas, Eduardo EnriqueTrattner, ChristophSabol, VedranCollaborative FilteringCrowd-SourcingPersonalized VisualizationsRecommender SystemsVisualization Recommenderhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner.Fil: Mutlu, Belgin. Know-Center GmbH; AustriaFil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Know-Center GmbH; AustriaFil: Trattner, Christoph. Know-Center GmbH; AustriaFil: Sabol, Vedran. Know-Center GmbH; AustriaSpringer2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59455Mutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran; Towards a Recommender Engine for Personalized Visualizations; Springer; Lecture Notes in Computer Science; 9146; 6-2015; 169-1820302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-20267-9_14info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-20267-9_14info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:02Zoai:ri.conicet.gov.ar:11336/59455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:03.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards a Recommender Engine for Personalized Visualizations |
title |
Towards a Recommender Engine for Personalized Visualizations |
spellingShingle |
Towards a Recommender Engine for Personalized Visualizations Mutlu, Belgin Collaborative Filtering Crowd-Sourcing Personalized Visualizations Recommender Systems Visualization Recommender |
title_short |
Towards a Recommender Engine for Personalized Visualizations |
title_full |
Towards a Recommender Engine for Personalized Visualizations |
title_fullStr |
Towards a Recommender Engine for Personalized Visualizations |
title_full_unstemmed |
Towards a Recommender Engine for Personalized Visualizations |
title_sort |
Towards a Recommender Engine for Personalized Visualizations |
dc.creator.none.fl_str_mv |
Mutlu, Belgin Veas, Eduardo Enrique Trattner, Christoph Sabol, Vedran |
author |
Mutlu, Belgin |
author_facet |
Mutlu, Belgin Veas, Eduardo Enrique Trattner, Christoph Sabol, Vedran |
author_role |
author |
author2 |
Veas, Eduardo Enrique Trattner, Christoph Sabol, Vedran |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Collaborative Filtering Crowd-Sourcing Personalized Visualizations Recommender Systems Visualization Recommender |
topic |
Collaborative Filtering Crowd-Sourcing Personalized Visualizations Recommender Systems Visualization Recommender |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner. Fil: Mutlu, Belgin. Know-Center GmbH; Austria Fil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Know-Center GmbH; Austria Fil: Trattner, Christoph. Know-Center GmbH; Austria Fil: Sabol, Vedran. Know-Center GmbH; Austria |
description |
Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59455 Mutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran; Towards a Recommender Engine for Personalized Visualizations; Springer; Lecture Notes in Computer Science; 9146; 6-2015; 169-182 0302-9743 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59455 |
identifier_str_mv |
Mutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran; Towards a Recommender Engine for Personalized Visualizations; Springer; Lecture Notes in Computer Science; 9146; 6-2015; 169-182 0302-9743 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-20267-9_14 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-20267-9_14 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268833289601024 |
score |
13.13397 |